Guillermo Tamayo-Cabeza, Gina Castiblanco-Rubio, E Angeles Martínez-Mier
{"title":"Fluoride exposure and metabolic alterations: a scoping review of metabolomic studies.","authors":"Guillermo Tamayo-Cabeza, Gina Castiblanco-Rubio, E Angeles Martínez-Mier","doi":"10.1007/s11306-025-02353-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Evidence from in-vitro and animal studies suggests that fluoride exposure may alter key metabolic pathways such as amino acid, fatty acid and energy metabolism in different tissues, requiring an understanding of its impact at the molecular level, especially in human populations.</p><p><strong>Aim of review: </strong>This scoping review aims to systematically map and synthesize the available evidence on metabolic alterations associated with fluoride exposure, specifically focusing on studies employing metabolomic analysis techniques to identify altered metabolites and metabolic pathways at the cellular, tissue, and organ levels.</p><p><strong>Key scientific concepts of review: </strong>Fluoride exposure has been found to alter a broad range of metabolic pathways, including those involved in energy metabolism (glycolysis, TCA cycle, mitochondrial activity), macromolecule metabolism (purine and fatty acid metabolism, amino acid pathways), and cellular stress responses (oxidative stress and glutathione metabolism). However, there is limited evidence in humans and potential mechanistic studies. While supportive, the reliance on animal models and in-vitro studies points to the need for human studies to compare metabolic alterations at different levels of fluoride exposure to aid in understanding the systemic effects of fluoride on human health.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"21 5","pages":"147"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12513868/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-025-02353-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Evidence from in-vitro and animal studies suggests that fluoride exposure may alter key metabolic pathways such as amino acid, fatty acid and energy metabolism in different tissues, requiring an understanding of its impact at the molecular level, especially in human populations.
Aim of review: This scoping review aims to systematically map and synthesize the available evidence on metabolic alterations associated with fluoride exposure, specifically focusing on studies employing metabolomic analysis techniques to identify altered metabolites and metabolic pathways at the cellular, tissue, and organ levels.
Key scientific concepts of review: Fluoride exposure has been found to alter a broad range of metabolic pathways, including those involved in energy metabolism (glycolysis, TCA cycle, mitochondrial activity), macromolecule metabolism (purine and fatty acid metabolism, amino acid pathways), and cellular stress responses (oxidative stress and glutathione metabolism). However, there is limited evidence in humans and potential mechanistic studies. While supportive, the reliance on animal models and in-vitro studies points to the need for human studies to compare metabolic alterations at different levels of fluoride exposure to aid in understanding the systemic effects of fluoride on human health.
期刊介绍:
Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to:
metabolomic applications within man, including pre-clinical and clinical
pharmacometabolomics for precision medicine
metabolic profiling and fingerprinting
metabolite target analysis
metabolomic applications within animals, plants and microbes
transcriptomics and proteomics in systems biology
Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.