Kyle Dack, Kerstin U Ludwig, Evie Stergiakouli, Jonathan Sandy, Sethlina Aryee, George Davey Smith, Amy Davies, Yvonne Wren, Gemma C Sharp, Kerry Humphries, Elisabeth Mangold, Lucy Goudswaard, Karen Ho, Tom Dudding, Sarah J Lewis
{"title":"Genetic heterogeneity and homogeneity among orofacial cleft subtypes: genome-wide association studies in the cleft collective.","authors":"Kyle Dack, Kerstin U Ludwig, Evie Stergiakouli, Jonathan Sandy, Sethlina Aryee, George Davey Smith, Amy Davies, Yvonne Wren, Gemma C Sharp, Kerry Humphries, Elisabeth Mangold, Lucy Goudswaard, Karen Ho, Tom Dudding, Sarah J Lewis","doi":"10.1093/hmg/ddaf131","DOIUrl":null,"url":null,"abstract":"<p><p>Several genome wide association studies (GWASs) of orofacial cleft have been conducted. However only a few such studies to date have combined all cleft cases, focused on subtypes other than non-syndromic cleft lip with/without cleft palate, or investigated subtype heterogeneity. We conducted a GWAS of orofacial clefts within 2268 cases from the Cleft Collective and 7913 population-based controls; we performed analyses of all orofacial clefts, plus 7 subgroups. We replicated our findings in a meta-analysis of independent samples and investigated patterns of correlation across subgroups. We identified 27 regions at genome-wide significance, 8 of which were novel. We also conducted the first GWAS of Pierre Robin Sequence, despite the small sample size (n cases = 237), we found one genome wide significant SNP (P < 5 × 10-8), and another 21 suggestive associations (P < 10-5). Novel loci include those mapping to LHX8 and TSBP1 (combined clefts), ARHGEF18 and ARHGEF19 (cleft lip with/without palate), FBN2 (cleft lip only), SLC35B3 (cleft palate only), CASC20 (Pierre Robin Sequence) and CHRM2 (non-syndromic cleft palate only). Several novel hits were in regions previously associated with facial morphology in GWAS or were in regions involved in key developmental processes, including neural crest cell migration and craniofacial development. We identified genetic loci with similar effects across all subgroups and some loci which were subtype specific, we also identified 3 loci with opposing effects on cleft lip and Pierre Robin sequence. Our findings highlight the merit of including all orofacial cleft subtypes in GWAS studies and investigating heterogeneity of effects across subtypes.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf131","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Several genome wide association studies (GWASs) of orofacial cleft have been conducted. However only a few such studies to date have combined all cleft cases, focused on subtypes other than non-syndromic cleft lip with/without cleft palate, or investigated subtype heterogeneity. We conducted a GWAS of orofacial clefts within 2268 cases from the Cleft Collective and 7913 population-based controls; we performed analyses of all orofacial clefts, plus 7 subgroups. We replicated our findings in a meta-analysis of independent samples and investigated patterns of correlation across subgroups. We identified 27 regions at genome-wide significance, 8 of which were novel. We also conducted the first GWAS of Pierre Robin Sequence, despite the small sample size (n cases = 237), we found one genome wide significant SNP (P < 5 × 10-8), and another 21 suggestive associations (P < 10-5). Novel loci include those mapping to LHX8 and TSBP1 (combined clefts), ARHGEF18 and ARHGEF19 (cleft lip with/without palate), FBN2 (cleft lip only), SLC35B3 (cleft palate only), CASC20 (Pierre Robin Sequence) and CHRM2 (non-syndromic cleft palate only). Several novel hits were in regions previously associated with facial morphology in GWAS or were in regions involved in key developmental processes, including neural crest cell migration and craniofacial development. We identified genetic loci with similar effects across all subgroups and some loci which were subtype specific, we also identified 3 loci with opposing effects on cleft lip and Pierre Robin sequence. Our findings highlight the merit of including all orofacial cleft subtypes in GWAS studies and investigating heterogeneity of effects across subtypes.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.