Eric G Prileson, Bianca Campagnari, Catherine I Clare, Amir R Gabidulin, René S Shahmohamadloo, Seth M Rudman
{"title":"Overwintering drives rapid adaptation in Drosophila with potential costs to insecticide resistance.","authors":"Eric G Prileson, Bianca Campagnari, Catherine I Clare, Amir R Gabidulin, René S Shahmohamadloo, Seth M Rudman","doi":"10.1093/evolut/qpaf205","DOIUrl":null,"url":null,"abstract":"<p><p>Winter is a formidable challenge for ectotherms that inhabit temperate climates. The extent to which winter conditions drive rapid adaptation, and separately, how selection from novel stressors affects adaptation to winter, remain poorly understood. Here we use replicate populations of Drosophila melanogaster in a field experiment to test i) whether winter conditions drive rapid adaptation and ii) for trade-offs between insecticide resistance and overwintering survival. Following a longitudinal field experiment investigating the evolution of insecticide resistance, we tracked subsequent evolution during an overwintering period. In unexposed control populations, we detected parallel evolutionary shifts indicative of adaptation to winter conditions in multiple traits, including body size and fecundity. Additionally, populations that had evolved insecticide resistance during the growing season were more likely to go extinct than control populations. Further, both control and resistant populations showed patterns of lower resistance following the winter period, suggestive of a trade-off between overwintering success and insecticide resistance. Rapid evolutionary responses to winter conditions, and potential costs of resistance, provide important context for understanding overwintering performance in temperate insects with implications for pest management and ecosystem services.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpaf205","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Winter is a formidable challenge for ectotherms that inhabit temperate climates. The extent to which winter conditions drive rapid adaptation, and separately, how selection from novel stressors affects adaptation to winter, remain poorly understood. Here we use replicate populations of Drosophila melanogaster in a field experiment to test i) whether winter conditions drive rapid adaptation and ii) for trade-offs between insecticide resistance and overwintering survival. Following a longitudinal field experiment investigating the evolution of insecticide resistance, we tracked subsequent evolution during an overwintering period. In unexposed control populations, we detected parallel evolutionary shifts indicative of adaptation to winter conditions in multiple traits, including body size and fecundity. Additionally, populations that had evolved insecticide resistance during the growing season were more likely to go extinct than control populations. Further, both control and resistant populations showed patterns of lower resistance following the winter period, suggestive of a trade-off between overwintering success and insecticide resistance. Rapid evolutionary responses to winter conditions, and potential costs of resistance, provide important context for understanding overwintering performance in temperate insects with implications for pest management and ecosystem services.
期刊介绍:
Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.