Optimised machine learning for time-to-event prediction in healthcare applied to timing of gastrostomy in ALS: a multi-centre, retrospective model development and validation study.

IF 10.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Marcel Weinreich, Harry McDonough, Mark Heverin, Éanna Mac Domhnaill, Nancy Yacovzada, Iddo Magen, Yahel Cohen, Calum Harvey, Ahmed Elazzab, Sarah Gornall, Sarah Boddy, James J P Alix, Julian M Kurz, Kevin P Kenna, Sai Zhang, Alfredo Iacoangeli, Ahmad Al-Khleifat, Michael P Snyder, Esther Hobson, Adriano Chio, Andrea Malaspina, Andreas Hermann, Caroline Ingre, Juan Vazquez Costa, Leonard van den Berg, Monica Povedano Panadés, Philip van Damme, Phillipe Corcia, Mamede de Carvalho, Ammar Al-Chalabi, Eran Hornstein, Eran Elhaik, Pamela J Shaw, Orla Hardiman, Christopher McDermott, Johnathan Cooper-Knock
{"title":"Optimised machine learning for time-to-event prediction in healthcare applied to timing of gastrostomy in ALS: a multi-centre, retrospective model development and validation study.","authors":"Marcel Weinreich, Harry McDonough, Mark Heverin, Éanna Mac Domhnaill, Nancy Yacovzada, Iddo Magen, Yahel Cohen, Calum Harvey, Ahmed Elazzab, Sarah Gornall, Sarah Boddy, James J P Alix, Julian M Kurz, Kevin P Kenna, Sai Zhang, Alfredo Iacoangeli, Ahmad Al-Khleifat, Michael P Snyder, Esther Hobson, Adriano Chio, Andrea Malaspina, Andreas Hermann, Caroline Ingre, Juan Vazquez Costa, Leonard van den Berg, Monica Povedano Panadés, Philip van Damme, Phillipe Corcia, Mamede de Carvalho, Ammar Al-Chalabi, Eran Hornstein, Eran Elhaik, Pamela J Shaw, Orla Hardiman, Christopher McDermott, Johnathan Cooper-Knock","doi":"10.1016/j.ebiom.2025.105962","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Amyotrophic lateral sclerosis (ALS) is invariably fatal but there are large variations in the rate of progression. The lack of predictability can make it difficult to plan clinical interventions. This includes the requirement for gastrostomy where early or late placement can adversely impact quality of life and survival.</p><p><strong>Methods: </strong>We designed a model to predict the timing of gastrostomy requirement in ALS as indicated by 5% weight loss from diagnosis. We considered >5000 different prediction model configurations including spline models and a set of deep learning (DL) models designed for time-to-event prediction. The optimal prediction model was chosen via a Bayesian framework to avoid overfitting. Model covariates were measurements routinely collected at diagnosis; a separate longitudinal model also incorporated weight at six months. We employed a training dataset of 3000 patients from Europe, and two external validation cohorts spanning distinct populations and clinical contexts (United States, n = 299; and Sweden, n = 215). Missing data was imputed using a random forest model.</p><p><strong>Findings: </strong>The optimal model configuration was a logistic hazard DL model. The optimal model achieved a median absolute error (MAE) between predicted and measured time of 3.7 months, with AUROC 0.75 for gastrostomy requirement at 12 months. To increase accuracy we updated predictions for those who had not received gastrostomy at six months after diagnosis: here MAE was 2.6 months (AUROC 0.86). Combining both models achieved MAE of 1.2 months for the modal group of patients. Prediction performance is stable across both validation cohorts. Missing data was imputed without degrading model performance.</p><p><strong>Interpretation: </strong>To enter routine clinical practice a prospective study will be required, but we have demonstrated stable performance across multiple populations and clinical contexts suggesting that our prediction model can be used to guide individualised gastrostomy decision making for patients with ALS.</p><p><strong>Funding: </strong>Research Ireland (RI) and Biogen have supported the PRECISION ALS programme.</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":"121 ","pages":"105962"},"PeriodicalIF":10.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2025.105962","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Amyotrophic lateral sclerosis (ALS) is invariably fatal but there are large variations in the rate of progression. The lack of predictability can make it difficult to plan clinical interventions. This includes the requirement for gastrostomy where early or late placement can adversely impact quality of life and survival.

Methods: We designed a model to predict the timing of gastrostomy requirement in ALS as indicated by 5% weight loss from diagnosis. We considered >5000 different prediction model configurations including spline models and a set of deep learning (DL) models designed for time-to-event prediction. The optimal prediction model was chosen via a Bayesian framework to avoid overfitting. Model covariates were measurements routinely collected at diagnosis; a separate longitudinal model also incorporated weight at six months. We employed a training dataset of 3000 patients from Europe, and two external validation cohorts spanning distinct populations and clinical contexts (United States, n = 299; and Sweden, n = 215). Missing data was imputed using a random forest model.

Findings: The optimal model configuration was a logistic hazard DL model. The optimal model achieved a median absolute error (MAE) between predicted and measured time of 3.7 months, with AUROC 0.75 for gastrostomy requirement at 12 months. To increase accuracy we updated predictions for those who had not received gastrostomy at six months after diagnosis: here MAE was 2.6 months (AUROC 0.86). Combining both models achieved MAE of 1.2 months for the modal group of patients. Prediction performance is stable across both validation cohorts. Missing data was imputed without degrading model performance.

Interpretation: To enter routine clinical practice a prospective study will be required, but we have demonstrated stable performance across multiple populations and clinical contexts suggesting that our prediction model can be used to guide individualised gastrostomy decision making for patients with ALS.

Funding: Research Ireland (RI) and Biogen have supported the PRECISION ALS programme.

优化机器学习在医疗保健中的时间到事件预测应用于ALS胃造口术的时机:一项多中心,回顾性模型开发和验证研究。
背景:肌萎缩性侧索硬化症(ALS)总是致命的,但在进展速度上有很大的差异。缺乏可预测性会使临床干预计划变得困难。这包括对胃造口术的要求,早期或晚放置会对生活质量和生存产生不利影响。方法:我们设计了一个模型来预测肌萎缩侧索硬化症患者胃造口手术的时间,以诊断体重减轻5%为指标。我们考虑了5000种不同的预测模型配置,包括样条模型和一组用于时间到事件预测的深度学习(DL)模型。通过贝叶斯框架选择最优预测模型,避免过拟合。模型协变量为诊断时常规收集的测量值;另一个独立的纵向模型也纳入了六个月时的体重。我们使用了来自欧洲的3000名患者的训练数据集,以及两个跨越不同人群和临床背景的外部验证队列(美国,n = 299;瑞典,n = 215)。缺失数据采用随机森林模型进行输入。结果:最优模型配置为logistic风险DL模型。最优模型在预测时间和测量时间之间的中位绝对误差(MAE)为3.7个月,12个月时胃造口需求的AUROC为0.75。为了提高准确性,我们更新了诊断后6个月未接受胃造口术的患者的预测:MAE为2.6个月(AUROC为0.86)。结合两种模型,modal组患者的MAE为1.2个月。预测性能在两个验证队列中都是稳定的。在不降低模型性能的情况下输入缺失数据。解释:为了进入常规临床实践,还需要一项前瞻性研究,但我们已经在多个人群和临床环境中证明了稳定的性能,这表明我们的预测模型可以用于指导ALS患者的个体化胃造口决策。资助:爱尔兰研究中心(RI)和Biogen公司支持PRECISION ALS项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EBioMedicine
EBioMedicine Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍: eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信