Water-soluble Poria cocos polysaccharide improves alcoholic liver disease via modulation of gut microbiota-mediated intestinal bile acids-farnesoid X receptor.
{"title":"Water-soluble Poria cocos polysaccharide improves alcoholic liver disease via modulation of gut microbiota-mediated intestinal bile acids-farnesoid X receptor.","authors":"Jiajing Huang, Luzhe Yu, Chen Zhang, Yue Fang, Xinyue Zhou, Rulin Wang, Lihua Xing, Lei Wang, Nianjun Yu, Daiyin Peng, Weidong Chen, Yue Zhang, Yanyan Wang","doi":"10.1016/j.ijbiomac.2025.148202","DOIUrl":null,"url":null,"abstract":"<p><p>Alcoholic liver disease (ALD) is characterized by gut microbiota dysbiosis. This study aimed to elucidate the mechanism by which water-soluble Poria cocos polysaccharide (PCP) ameliorates ALD through modulation of the gut microbiota. PCP administration alleviated hepatic injury, reduced lipid accumulation, and attenuated inflammation in ALD mice. It also enhanced intestinal barrier integrity, as indicated by upregulation of tight junction proteins (ZO-1, Occludin, Claudin-1) and reduced lipopolysaccharide (LPS) levels. Additionally, PCP treatment remodeled the gut microbiota profile, characterized by a marked enrichment of Parabacteroides distasonis, which is associated with bile acid metabolism. Targeted metabolomics revealed PCP increased intestinal chenodeoxycholic acid (CDCA) and cholic acid (CA) levels, activating the intestinal farnesoid X receptor/fibroblast growth factor 15 (FXR/FGF15) axis while suppressing hepatic Cholesterol 7α-hydroxylase (CYP7A1), ultimately reducing systemic bile acids. Fecal microbiota transplantation confirmed gut microbiota-mediated protection, while intestinal FXR inhibition with glycine-β-muricholic acid (Gly-β-MCA) abolished PCP's therapeutic effects. These findings reveal that PCP ameliorates ALD by regulating the gut microbiota-bile acid-FXR axis, PCP as a promising natural therapeutic for ALD.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"148202"},"PeriodicalIF":8.5000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.148202","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alcoholic liver disease (ALD) is characterized by gut microbiota dysbiosis. This study aimed to elucidate the mechanism by which water-soluble Poria cocos polysaccharide (PCP) ameliorates ALD through modulation of the gut microbiota. PCP administration alleviated hepatic injury, reduced lipid accumulation, and attenuated inflammation in ALD mice. It also enhanced intestinal barrier integrity, as indicated by upregulation of tight junction proteins (ZO-1, Occludin, Claudin-1) and reduced lipopolysaccharide (LPS) levels. Additionally, PCP treatment remodeled the gut microbiota profile, characterized by a marked enrichment of Parabacteroides distasonis, which is associated with bile acid metabolism. Targeted metabolomics revealed PCP increased intestinal chenodeoxycholic acid (CDCA) and cholic acid (CA) levels, activating the intestinal farnesoid X receptor/fibroblast growth factor 15 (FXR/FGF15) axis while suppressing hepatic Cholesterol 7α-hydroxylase (CYP7A1), ultimately reducing systemic bile acids. Fecal microbiota transplantation confirmed gut microbiota-mediated protection, while intestinal FXR inhibition with glycine-β-muricholic acid (Gly-β-MCA) abolished PCP's therapeutic effects. These findings reveal that PCP ameliorates ALD by regulating the gut microbiota-bile acid-FXR axis, PCP as a promising natural therapeutic for ALD.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.