Inhibition of biofilm formation and virulence factors of Pseudomonas aeruginosa by ciprofloxacin-loaded ZnO@lignin@chitosan nanoparticles.

IF 8.5 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nadia Fattahi, Nazia Tabassum, Fazlurrahman Khan, Nam-Gyun Kim, Young-Mog Kim, Bonggi Lee, Sei-Jung Lee, Jae-Young Je, Won-Sun Park, Il-Whan Choi, Nguyen Vu Linh, Won-Kyo Jung
{"title":"Inhibition of biofilm formation and virulence factors of Pseudomonas aeruginosa by ciprofloxacin-loaded ZnO@lignin@chitosan nanoparticles.","authors":"Nadia Fattahi, Nazia Tabassum, Fazlurrahman Khan, Nam-Gyun Kim, Young-Mog Kim, Bonggi Lee, Sei-Jung Lee, Jae-Young Je, Won-Sun Park, Il-Whan Choi, Nguyen Vu Linh, Won-Kyo Jung","doi":"10.1016/j.ijbiomac.2025.148193","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid development of antimicrobial resistance (AMR) in bacterial infections leads to increased mortality and reduced treatment effectiveness. Given the urgent need for multifunctional therapeutic agents capable of overcoming AMR, we developed a novel ZnO@lignin@chitosan nanocomposite loaded with ciprofloxacin (CIP), in which the synergistic combination of ZnO, lignin, and chitosan enhances antibacterial, antibiofilm, antivirulence, and antioxidant performance. The synthesized nanocomposite was characterized using various techniques, including Fourier transform infrared spectroscopy (FT-IR), UV-visible spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) analysis, elemental mapping (MAP), field emission transmission electron microscopy (FE-TEM), and X-ray photoelectron spectroscopy (XPS). The ZnO@lignin@chitosan@CIP nanocomposite exhibited pH-responsive drug release, with accelerated release in acidic environments mimicking infection sites. The synergistic combination of its components enhanced multifunctional performance: lignin acted as an antioxidant, chitosan improved drug loading, biocompatibility, and inherent antibacterial activity against Gram-positive, Gram-negative, and the fungal strain Candida albicans, while ZnO nanoparticles (NPs) contributed additional antimicrobial effects. Furthermore, the nanocomposite effectively inhibited Pseudomonas aeruginosa (P. aeruginosa) biofilm formation and suppressed virulence factors, including protease, pyocyanin, and pyoverdine at sub-minimum inhibitory concentrations (sub-MICs). Moreover, gene expression analysis revealed downregulation of key quorum-sensing regulators (lasI, lasR, rhlI, and rhlR), indicating the composite's molecular antivirulence potential. These findings demonstrate that the unique synergy of ZnO, lignin, and chitosan provides multifunctional advantages, making ZnO@lignin@chitosan@CIP a promising candidate for combating drug-resistant and biofilm-associated infections.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"148193"},"PeriodicalIF":8.5000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.148193","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of antimicrobial resistance (AMR) in bacterial infections leads to increased mortality and reduced treatment effectiveness. Given the urgent need for multifunctional therapeutic agents capable of overcoming AMR, we developed a novel ZnO@lignin@chitosan nanocomposite loaded with ciprofloxacin (CIP), in which the synergistic combination of ZnO, lignin, and chitosan enhances antibacterial, antibiofilm, antivirulence, and antioxidant performance. The synthesized nanocomposite was characterized using various techniques, including Fourier transform infrared spectroscopy (FT-IR), UV-visible spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) analysis, elemental mapping (MAP), field emission transmission electron microscopy (FE-TEM), and X-ray photoelectron spectroscopy (XPS). The ZnO@lignin@chitosan@CIP nanocomposite exhibited pH-responsive drug release, with accelerated release in acidic environments mimicking infection sites. The synergistic combination of its components enhanced multifunctional performance: lignin acted as an antioxidant, chitosan improved drug loading, biocompatibility, and inherent antibacterial activity against Gram-positive, Gram-negative, and the fungal strain Candida albicans, while ZnO nanoparticles (NPs) contributed additional antimicrobial effects. Furthermore, the nanocomposite effectively inhibited Pseudomonas aeruginosa (P. aeruginosa) biofilm formation and suppressed virulence factors, including protease, pyocyanin, and pyoverdine at sub-minimum inhibitory concentrations (sub-MICs). Moreover, gene expression analysis revealed downregulation of key quorum-sensing regulators (lasI, lasR, rhlI, and rhlR), indicating the composite's molecular antivirulence potential. These findings demonstrate that the unique synergy of ZnO, lignin, and chitosan provides multifunctional advantages, making ZnO@lignin@chitosan@CIP a promising candidate for combating drug-resistant and biofilm-associated infections.

负载环丙沙星ZnO@lignin@壳聚糖纳米颗粒对铜绿假单胞菌生物膜形成及毒力因子的抑制作用。
细菌感染中抗菌素耐药性(AMR)的迅速发展导致死亡率增加和治疗效果降低。鉴于迫切需要能够克服AMR的多功能治疗剂,我们开发了一种新型ZnO@lignin@壳聚糖纳米复合材料,负载环丙沙星(CIP),其中ZnO,木质素和壳聚糖的协同组合增强了抗菌,抗生物膜,抗毒和抗氧化性能。利用傅里叶变换红外光谱(FT-IR)、紫外可见光谱、x射线衍射(XRD)、场发射扫描电镜(FE-SEM)、能量色散x射线(EDX)分析、元素映射(MAP)、场发射透射电子显微镜(FE-TEM)和x射线光电子能谱(XPS)等多种技术对合成的纳米复合材料进行了表征。ZnO@lignin@chitosan@CIP纳米复合材料表现出ph响应性药物释放,在模拟感染部位的酸性环境中加速释放。其组分的协同组合增强了多功能性能:木质素作为抗氧化剂,壳聚糖改善了药物负荷、生物相容性和对革兰氏阳性、革兰氏阴性和白色念珠菌的固有抗菌活性,而ZnO纳米颗粒(NPs)具有额外的抗菌作用。此外,纳米复合材料有效地抑制铜绿假单胞菌(P. aeruginosa)生物膜的形成,并在亚最低抑制浓度(亚mic)下抑制毒力因子,包括蛋白酶、pyocyanin和pyoverdine。此外,基因表达分析显示,关键群体感应调节因子(lasI, lasR, rhlI和rhlR)下调,表明该复合材料具有分子抗毒潜力。这些发现表明,ZnO、木质素和壳聚糖的独特协同作用提供了多功能优势,使ZnO@lignin@chitosan@CIP成为对抗耐药和生物膜相关感染的有希望的候选物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信