Mechanosensitive Ion Channels as Novel Targets in Osteoporosis.

IF 5.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Christoph Beyersdorf, Uwe Maus, Felix Wiedmann, J Juliana Franziska Bousch, Maximilian Waibel, Constanze Schmidt, Merten Prüser
{"title":"Mechanosensitive Ion Channels as Novel Targets in Osteoporosis.","authors":"Christoph Beyersdorf, Uwe Maus, Felix Wiedmann, J Juliana Franziska Bousch, Maximilian Waibel, Constanze Schmidt, Merten Prüser","doi":"10.1093/jbmr/zjaf145","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoporosis is the most prevalent metabolic bone disease globally, characterized by decreased bone mass and microarchitectural deterioration, leading to an increased risk of fractures. While its pathogenesis is multifactorial, including hormonal changes, aging and inflammatory processes, and thus far incompletely understood, recent advances in ion channel research have shed light on the importance of mechanosensitive ion channels as novel players in these pathophysiological processes. This perspective discusses the involvement of the mechanosensitive ion channels TREK-1, Piezo, and VRACs as potential novel pharmacological targets for the treatment of osteoporosis. TREK-1, a mechanosensitive K2P channel is important for maintaining the resting membrane potential in many cells, including osteoblasts and osteoclasts. K2P channels regulate osteoblast proliferation and differentiation, as well as osteoclast activity, potentially modulating bone remodeling in osteoporosis. Piezo channels influence osteoblast differentiation and osteoclast activity by modulating calcium influx, which is crucial for osteogenic signaling pathways such as Wnt/β-catenin and ERK1/2. Piezo1 activation promotes bone formation, while its deficiency leads to impaired osteogenesis and increased bone resorption. VRACs have been shown to be involved in osteoblast adaptation to mechanical stress and macrophage polarization, which indicates their importance for bone homeostasis. Chronic inflammation is a major contributor to osteoporosis progression. Evidence of ion channel involvement in this process has emerged in recent years. Specifically, macrophage function in osteoporosis seems to be linked to ion channel activity. Inflammatory polarization of macrophages is a key player in inflammation-induced bone loss and can be driven by mechanosensitive ion channels. Modulating these ion channels may provide therapeutic opportunities, as evidenced by studies showing that targeting TREK-1 and Piezo1 can alter macrophage polarization and reduce osteoclast-mediated bone resorption. Given the complexity of ion channel interactions in bone cells and their regulatory role in bone remodeling, understanding their precise function in osteoporosis is essential. Targeted modulation of mechanosensitive ion channels holds promise as a novel therapeutic approach to mitigate inflammation-driven bone loss and improve bone density. Further research into their role in osteoclasts and macrophage-driven bone degradation will aid in developing innovative osteoporosis treatments.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjaf145","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoporosis is the most prevalent metabolic bone disease globally, characterized by decreased bone mass and microarchitectural deterioration, leading to an increased risk of fractures. While its pathogenesis is multifactorial, including hormonal changes, aging and inflammatory processes, and thus far incompletely understood, recent advances in ion channel research have shed light on the importance of mechanosensitive ion channels as novel players in these pathophysiological processes. This perspective discusses the involvement of the mechanosensitive ion channels TREK-1, Piezo, and VRACs as potential novel pharmacological targets for the treatment of osteoporosis. TREK-1, a mechanosensitive K2P channel is important for maintaining the resting membrane potential in many cells, including osteoblasts and osteoclasts. K2P channels regulate osteoblast proliferation and differentiation, as well as osteoclast activity, potentially modulating bone remodeling in osteoporosis. Piezo channels influence osteoblast differentiation and osteoclast activity by modulating calcium influx, which is crucial for osteogenic signaling pathways such as Wnt/β-catenin and ERK1/2. Piezo1 activation promotes bone formation, while its deficiency leads to impaired osteogenesis and increased bone resorption. VRACs have been shown to be involved in osteoblast adaptation to mechanical stress and macrophage polarization, which indicates their importance for bone homeostasis. Chronic inflammation is a major contributor to osteoporosis progression. Evidence of ion channel involvement in this process has emerged in recent years. Specifically, macrophage function in osteoporosis seems to be linked to ion channel activity. Inflammatory polarization of macrophages is a key player in inflammation-induced bone loss and can be driven by mechanosensitive ion channels. Modulating these ion channels may provide therapeutic opportunities, as evidenced by studies showing that targeting TREK-1 and Piezo1 can alter macrophage polarization and reduce osteoclast-mediated bone resorption. Given the complexity of ion channel interactions in bone cells and their regulatory role in bone remodeling, understanding their precise function in osteoporosis is essential. Targeted modulation of mechanosensitive ion channels holds promise as a novel therapeutic approach to mitigate inflammation-driven bone loss and improve bone density. Further research into their role in osteoclasts and macrophage-driven bone degradation will aid in developing innovative osteoporosis treatments.

机械敏感离子通道作为骨质疏松症的新靶点。
骨质疏松症是全球最普遍的代谢性骨病,其特征是骨量减少和微结构恶化,导致骨折风险增加。虽然其发病机制是多因素的,包括激素变化、衰老和炎症过程,迄今尚未完全了解,但离子通道研究的最新进展揭示了机械敏感离子通道作为这些病理生理过程中的新参与者的重要性。这一观点讨论了机械敏感离子通道TREK-1, Piezo和vrac作为治疗骨质疏松症的潜在新药理学靶点的参与。TREK-1是一种机械敏感的K2P通道,对维持许多细胞的静息膜电位很重要,包括成骨细胞和破骨细胞。K2P通道调节成骨细胞的增殖和分化,以及破骨细胞的活性,可能调节骨质疏松症的骨重塑。piezozo通道通过调节钙内流影响成骨细胞分化和破骨细胞活性,钙内流对于Wnt/β-catenin和ERK1/2等成骨信号通路至关重要。Piezo1激活促进骨形成,而其缺乏导致骨生成受损和骨吸收增加。vrac已被证明参与成骨细胞对机械应力和巨噬细胞极化的适应,这表明它们对骨稳态的重要性。慢性炎症是骨质疏松症进展的主要原因。离子通道参与这一过程的证据近年来已经出现。具体来说,巨噬细胞在骨质疏松症中的功能似乎与离子通道活性有关。巨噬细胞的炎症极化是炎症性骨质流失的关键因素,可由机械敏感离子通道驱动。调节这些离子通道可能提供治疗机会,研究表明靶向TREK-1和Piezo1可以改变巨噬细胞极化并减少破骨细胞介导的骨吸收。考虑到骨细胞中离子通道相互作用的复杂性及其在骨重塑中的调节作用,了解它们在骨质疏松症中的确切功能至关重要。定向调节机械敏感离子通道有望作为一种新的治疗方法来减轻炎症驱动的骨质流失和改善骨密度。进一步研究它们在破骨细胞和巨噬细胞驱动的骨降解中的作用将有助于开发创新的骨质疏松症治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bone and Mineral Research
Journal of Bone and Mineral Research 医学-内分泌学与代谢
CiteScore
11.30
自引率
6.50%
发文量
257
审稿时长
2 months
期刊介绍: The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信