{"title":"Facile Exfoliation of Silk Nanofibrils Enabled by Hydrogen Bond Network Reconfiguration in Deep Eutectic Solvent/Water Systems.","authors":"Wen-Qian Lian, Zi-Yang Fan, Sheng He, Shu-Ling Yang, Gui-Chuan Wei, Rui-Ying Bao, Wei Yang","doi":"10.1021/acs.biomac.5c01371","DOIUrl":null,"url":null,"abstract":"<p><p>Silk nanofibers (SNFs) with distinctive physicochemical properties are promising nanoscale building blocks of porous materials, yet high-yield exfoliation using green solvents remains challenging. Herein, hydrogen-bonding small molecules (water, methanol, and ethanol) were introduced into deep eutectic solvents (DESs) to reconfigure hydrogen-bond networks and promote exfoliation. Among them, DES/water mixtures proved most effective: adding 30 wt % water reduced average SNF diameter from 239 ± 184 nm to 109 ± 27 nm and delivered a yield of 98.3% within 24 h. The improvement is attributed to hydrogen-bond reorganization, decreased viscosity, and enhanced proton transfer. The resulting SNFs preserved silk's hierarchical structures and were assembled into flexible membranes with a tensile strength of 34 MPa. These porous membranes effectively removed microplastics, with rejection rates above 91% through combined size exclusion and adsorption. This work demonstrates DES/water mixtures as sustainable solvent systems for scalable SNF production and the fabrication of high-performance membranes for water purification.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c01371","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Silk nanofibers (SNFs) with distinctive physicochemical properties are promising nanoscale building blocks of porous materials, yet high-yield exfoliation using green solvents remains challenging. Herein, hydrogen-bonding small molecules (water, methanol, and ethanol) were introduced into deep eutectic solvents (DESs) to reconfigure hydrogen-bond networks and promote exfoliation. Among them, DES/water mixtures proved most effective: adding 30 wt % water reduced average SNF diameter from 239 ± 184 nm to 109 ± 27 nm and delivered a yield of 98.3% within 24 h. The improvement is attributed to hydrogen-bond reorganization, decreased viscosity, and enhanced proton transfer. The resulting SNFs preserved silk's hierarchical structures and were assembled into flexible membranes with a tensile strength of 34 MPa. These porous membranes effectively removed microplastics, with rejection rates above 91% through combined size exclusion and adsorption. This work demonstrates DES/water mixtures as sustainable solvent systems for scalable SNF production and the fabrication of high-performance membranes for water purification.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.