Valorization of biowaste into functional additives for membrane-based investigation of separation and fouling in polysaccharides and polyphenols production.
Hemanth Kumar K, A S Anjana Krishnan, T Swathi, R Logith, D S Imaya, G Arthanareeswaran, Mangalaraja Ramalinga Viswanathan
{"title":"Valorization of biowaste into functional additives for membrane-based investigation of separation and fouling in polysaccharides and polyphenols production.","authors":"Hemanth Kumar K, A S Anjana Krishnan, T Swathi, R Logith, D S Imaya, G Arthanareeswaran, Mangalaraja Ramalinga Viswanathan","doi":"10.1016/j.biortech.2025.133421","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane fouling is a persistent limitation in membrane-based water purification. In this study, polyethersulfone was modified with biowaste-derived functional additives such as cellulose from waste newspaper, nitrogen-doped activated carbon from fish scales, and silica from sugarcane bagasse to enhance antifouling performance during the production of polysaccharides and polyphenols. The modified membranes exhibited improved hydrophilicity, from 77.6° (pristine PES) to 58.5° (cellulose-based). The incorporation of cellulose gives the highest flux recovery ratio (78 %), driven by its superior hydrophilicity and resistance to irreversible fouling. Hermia's model analysis (R2 > 0.95) confirmed that fouling was predominantly governed by complete and intermediate blocking, while standard blocking appeared selectively depending on foulant type and material composition. Overall, cellulose demonstrated good antifouling capability, while silica provided a balanced morphology with reversible fouling under polysaccharide filtration. These results highlight the promise of biowaste valorisation for developing sustainable and membrane materials for polysaccharides and polyphenols production.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"133421"},"PeriodicalIF":9.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.133421","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane fouling is a persistent limitation in membrane-based water purification. In this study, polyethersulfone was modified with biowaste-derived functional additives such as cellulose from waste newspaper, nitrogen-doped activated carbon from fish scales, and silica from sugarcane bagasse to enhance antifouling performance during the production of polysaccharides and polyphenols. The modified membranes exhibited improved hydrophilicity, from 77.6° (pristine PES) to 58.5° (cellulose-based). The incorporation of cellulose gives the highest flux recovery ratio (78 %), driven by its superior hydrophilicity and resistance to irreversible fouling. Hermia's model analysis (R2 > 0.95) confirmed that fouling was predominantly governed by complete and intermediate blocking, while standard blocking appeared selectively depending on foulant type and material composition. Overall, cellulose demonstrated good antifouling capability, while silica provided a balanced morphology with reversible fouling under polysaccharide filtration. These results highlight the promise of biowaste valorisation for developing sustainable and membrane materials for polysaccharides and polyphenols production.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.