{"title":"Duality and the equations of Rees rings and tangent algebras","authors":"Matthew Weaver","doi":"10.1002/mana.70044","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> be a module of projective dimension 1 over a Noetherian ring <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> and consider its Rees algebra <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {R}(E)$</annotation>\n </semantics></math>. We study this ring as a quotient of the symmetric algebra <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {S}(E)$</annotation>\n </semantics></math> and consider the ideal <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> defining this quotient. In the case that <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {S}(E)$</annotation>\n </semantics></math> is a complete intersection ring, we employ a duality between <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {S}(E)$</annotation>\n </semantics></math> in order to study the Rees ring <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {R}(E)$</annotation>\n </semantics></math> in multiple settings. In particular, when <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> is a complete intersection ring defined by quadrics, we consider its module of Kähler differentials <span></span><math>\n <semantics>\n <msub>\n <mi>Ω</mi>\n <mrow>\n <mi>R</mi>\n <mo>/</mo>\n <mi>k</mi>\n </mrow>\n </msub>\n <annotation>$\\Omega _{R/k}$</annotation>\n </semantics></math> and its associated tangent algebras.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 10","pages":"3394-3416"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70044","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a module of projective dimension 1 over a Noetherian ring and consider its Rees algebra . We study this ring as a quotient of the symmetric algebra and consider the ideal defining this quotient. In the case that is a complete intersection ring, we employ a duality between and in order to study the Rees ring in multiple settings. In particular, when is a complete intersection ring defined by quadrics, we consider its module of Kähler differentials and its associated tangent algebras.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index