Stefan K. W. Chu, Anastasios I. Giouvanidis, Cheng Ning Loong, Elias G. Dimitrakopoulos
{"title":"New Perspectives in Causal Relationships Between the Response of a Rocking Block and Intensity Measures via Ensemble Machine Learning Methodologies","authors":"Stefan K. W. Chu, Anastasios I. Giouvanidis, Cheng Ning Loong, Elias G. Dimitrakopoulos","doi":"10.1002/eqe.70042","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the ability of machine learning (ML) to characterise the response of rocking structures when subjected to recorded earthquakes. In particular, it uses the structural parameters of a rigid block and strong ground motion characteristics to train two random forest (RF) models. The first model predicts whether a block, given that it initiates rocking motion, overturns or undergoes safe rocking, and identifies the main variables, i.e., structural and ground motion features, that govern such classification. Provided no overturning occurs, the second RF model predicts the peak rocking rotation of a block under ground motion records. Importantly, this study also employs interpretable ML techniques (such as partial dependence plots and SHAP additive explanations) to identify causal relationships between strong ground motion parameters and rocking response. The analysis shows that under high-intensity earthquakes, the peak ground velocity (PGV) governs the overturning of a rocking block. For earthquakes of moderate intensity, overturning becomes a more interactive phenomenon where the PGV, frequency/period and duration characteristics of the seismic signal contribute. Finally, this research shows that high safe rocking amplitude is also interactive, with velocity, displacement, (mean) frequency/period, and duration characteristics of the ground excitation playing a pivotal role.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":"54 14","pages":"3576-3593"},"PeriodicalIF":5.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eqe.70042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.70042","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the ability of machine learning (ML) to characterise the response of rocking structures when subjected to recorded earthquakes. In particular, it uses the structural parameters of a rigid block and strong ground motion characteristics to train two random forest (RF) models. The first model predicts whether a block, given that it initiates rocking motion, overturns or undergoes safe rocking, and identifies the main variables, i.e., structural and ground motion features, that govern such classification. Provided no overturning occurs, the second RF model predicts the peak rocking rotation of a block under ground motion records. Importantly, this study also employs interpretable ML techniques (such as partial dependence plots and SHAP additive explanations) to identify causal relationships between strong ground motion parameters and rocking response. The analysis shows that under high-intensity earthquakes, the peak ground velocity (PGV) governs the overturning of a rocking block. For earthquakes of moderate intensity, overturning becomes a more interactive phenomenon where the PGV, frequency/period and duration characteristics of the seismic signal contribute. Finally, this research shows that high safe rocking amplitude is also interactive, with velocity, displacement, (mean) frequency/period, and duration characteristics of the ground excitation playing a pivotal role.
期刊介绍:
Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following:
ground motions for analysis and design
geotechnical earthquake engineering
probabilistic and deterministic methods of dynamic analysis
experimental behaviour of structures
seismic protective systems
system identification
risk assessment
seismic code requirements
methods for earthquake-resistant design and retrofit of structures.