On Some Algorithmic and Structural Results on Flames

IF 1 3区 数学 Q2 MATHEMATICS
Dávid Szeszlér
{"title":"On Some Algorithmic and Structural Results on Flames","authors":"Dávid Szeszlér","doi":"10.1002/jgt.23283","DOIUrl":null,"url":null,"abstract":"<p>A directed graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> with a root node <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math> is called a <i>flame</i> if for every vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> other than <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math> the local edge-connectivity value <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>λ</mi>\n \n <mi>F</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>,</mo>\n \n <mi>v</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> is equal to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>ϱ</mi>\n \n <mi>F</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, the in-degree of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math>. It is a classic, simple and beautiful result of Lovász [4] that every digraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n </semantics></math> with a root node <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math> has a spanning subgraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> that is a flame and the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>,</mo>\n \n <mi>v</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> values are the same in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> as in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n </semantics></math> for every vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> other than <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n </mrow>\n </mrow>\n </semantics></math>. However, the complexity of finding the minimum weight of such a subgraph is open [3]. In this paper we prove that this problem is solvable in strongly polynomial time for acyclic digraphs. Besides that, we prove a decomposition result of flames into edge-disjoint branchings via a chain of smaller flames and use this to prove a common generalization of Lovász's above mentioned theorem and Edmonds' classic disjoint arborescences theorem.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 4","pages":"392-397"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23283","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23283","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A directed graph F with a root node r is called a flame if for every vertex v other than r the local edge-connectivity value λ F ( r , v ) from r to v is equal to ϱ F ( v ) , the in-degree of v . It is a classic, simple and beautiful result of Lovász [4] that every digraph D with a root node r has a spanning subgraph F that is a flame and the λ ( r , v ) values are the same in F as in D for every vertex v other than r . However, the complexity of finding the minimum weight of such a subgraph is open [3]. In this paper we prove that this problem is solvable in strongly polynomial time for acyclic digraphs. Besides that, we prove a decomposition result of flames into edge-disjoint branchings via a chain of smaller flames and use this to prove a common generalization of Lovász's above mentioned theorem and Edmonds' classic disjoint arborescences theorem.

Abstract Image

关于火焰的一些算法和结构结果
有根节点r的有向图F,如果对每个顶点v都有,则称为火焰图局部边连通性值λ F(r;V)从r到V等于ϱ F (v)v的in度。这是一部经典之作,Lovász[4]的简单而美丽的结果,每个有向图D与根节点r有一个生成子图F是火焰,λ (r)v)的值在F中与在除了r以外的每个顶点v都是D。然而,找到这样一个子图的最小权值的复杂度是开放的[3]。本文证明了该问题在强多项式时间内是可解的。除此之外,我们还证明了火焰通过一个较小的火焰链分解成边缘不相交分支的结果,并以此证明了Lovász的上述定理和Edmonds的经典不相交树杈定理的一个共同推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信