{"title":"Gut Microbial Genetic Variation Regulates Host Reproduction","authors":"Xiaoyue Ding, Yalun Wu, Dianshuang Zhou, Rongrong Gu, Tao Zhu, Wen Cai, Yuxuan Ren, Ying Li, Chuhe Wang, Anqi Tan, Ying Li, Zuobin Zhu","doi":"10.1111/1751-7915.70248","DOIUrl":null,"url":null,"abstract":"<p>The gut-testis axis enables gut microbes to influence host reproduction; nonetheless, the specific role of microbial genetic variation in this process remains elusive. In this study, using <i>Caenorhabditis elegans</i> (<i>C. elegans</i>) as a model organism, we identified 46 <i>Escherichia coli</i> (<i>E. coli</i>) strains that markedly enhanced <i>C. elegans</i> fertility. Of them, 26 strains were mutant variants capable of mitigating cyclophosphamide (CTX)-induced reproductive disorders in <i>C. elegans</i>. To investigate their application, we constructed probiotics to validate their effectiveness in mouse reproduction. The engineering probiotic Ecn Δ<i>pal</i> significantly improved spermatogenesis in mice with CTX-induced reproductive disorders. Finally, comprehensive metabolome and transcriptome analysis suggested that the purine metabolism pathway may contribute to ameliorating cyclophosphamide-induced male reproductive toxicity. Overall, our study provides novel insights into the impact of gut microbial genetic variation on host reproduction and elucidates novel therapeutic avenues for mitigating CTX-induced male reproductive toxicity.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 10","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70248","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.70248","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The gut-testis axis enables gut microbes to influence host reproduction; nonetheless, the specific role of microbial genetic variation in this process remains elusive. In this study, using Caenorhabditis elegans (C. elegans) as a model organism, we identified 46 Escherichia coli (E. coli) strains that markedly enhanced C. elegans fertility. Of them, 26 strains were mutant variants capable of mitigating cyclophosphamide (CTX)-induced reproductive disorders in C. elegans. To investigate their application, we constructed probiotics to validate their effectiveness in mouse reproduction. The engineering probiotic Ecn Δpal significantly improved spermatogenesis in mice with CTX-induced reproductive disorders. Finally, comprehensive metabolome and transcriptome analysis suggested that the purine metabolism pathway may contribute to ameliorating cyclophosphamide-induced male reproductive toxicity. Overall, our study provides novel insights into the impact of gut microbial genetic variation on host reproduction and elucidates novel therapeutic avenues for mitigating CTX-induced male reproductive toxicity.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes