Artificial Solid Electrolyte Interphase for Sodium Metal Batteries: Mechanistic Insights and Design Strategies

IF 14.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hong Yin, Yingqi Cao, Yaru Wang, Bo Xiao, Wei Wang, Zhaohui Hou, Najeeb Lashari, Joao Cunha, Chong Yang, Zhipeng Yu
{"title":"Artificial Solid Electrolyte Interphase for Sodium Metal Batteries: Mechanistic Insights and Design Strategies","authors":"Hong Yin,&nbsp;Yingqi Cao,&nbsp;Yaru Wang,&nbsp;Bo Xiao,&nbsp;Wei Wang,&nbsp;Zhaohui Hou,&nbsp;Najeeb Lashari,&nbsp;Joao Cunha,&nbsp;Chong Yang,&nbsp;Zhipeng Yu","doi":"10.1002/eem2.70077","DOIUrl":null,"url":null,"abstract":"<p>As the transition to renewable energy accelerates, sodium metal batteries have emerged as a viable and economical substitute for lithium-ion technology. The unstable solid electrolyte interphase on sodium metal anodes continues to provide a significant challenge to attaining long-term cycle stability and safety. Natural solid electrolyte interphase layers frequently demonstrate inadequate mechanical integrity and deficient ionic conductivity, resulting in dendritic formation, diminished Coulombic efficiency, and capacity degradation. Creating artificial solid electrolyte interphases has emerged as an essential remedy to address these restrictions. This review offers an extensive analysis of artificial solid electrolyte interphases techniques for sodium metal batteries, emphasizing their creation mechanisms, material selection, and structural design. The research highlights the significance of fluoride-based materials, multi-layered solid electrolyte interphase structures, and polymer composites in mitigating dendrite development and improving interfacial stability. Advanced characterization techniques, including microscopy and spectroscopy, are emphasized for examining the microstructure and ion transport properties of artificial solid electrolyte interphases layers. Additionally, density functional theory simulations are examined to forecast ideal material compositions and ion migration paths. This study seeks to inform future developments in artificial solid electrolyte interphases engineering to facilitate enhanced performance, safety, and market viability of sodium metal batteries. Artificial solid electrolyte interphases facilitate next-generation sustainable energy storage systems through new interface designs and integrated analysis.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 6","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70077","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.70077","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As the transition to renewable energy accelerates, sodium metal batteries have emerged as a viable and economical substitute for lithium-ion technology. The unstable solid electrolyte interphase on sodium metal anodes continues to provide a significant challenge to attaining long-term cycle stability and safety. Natural solid electrolyte interphase layers frequently demonstrate inadequate mechanical integrity and deficient ionic conductivity, resulting in dendritic formation, diminished Coulombic efficiency, and capacity degradation. Creating artificial solid electrolyte interphases has emerged as an essential remedy to address these restrictions. This review offers an extensive analysis of artificial solid electrolyte interphases techniques for sodium metal batteries, emphasizing their creation mechanisms, material selection, and structural design. The research highlights the significance of fluoride-based materials, multi-layered solid electrolyte interphase structures, and polymer composites in mitigating dendrite development and improving interfacial stability. Advanced characterization techniques, including microscopy and spectroscopy, are emphasized for examining the microstructure and ion transport properties of artificial solid electrolyte interphases layers. Additionally, density functional theory simulations are examined to forecast ideal material compositions and ion migration paths. This study seeks to inform future developments in artificial solid electrolyte interphases engineering to facilitate enhanced performance, safety, and market viability of sodium metal batteries. Artificial solid electrolyte interphases facilitate next-generation sustainable energy storage systems through new interface designs and integrated analysis.

Abstract Image

钠金属电池的人造固体电解质界面:机理和设计策略
随着向可再生能源转型的加速,钠金属电池已经成为锂离子技术的一种可行且经济的替代品。金属钠阳极上不稳定的固体电解质界面仍然是实现长期循环稳定性和安全性的重大挑战。天然固体电解质间相层经常表现出机械完整性不足和离子电导率不足,导致枝晶形成,库仑效率降低和容量退化。创造人工固体电解质界面已成为解决这些限制的基本补救措施。本文综述了用于钠金属电池的人工固体电解质界面技术,重点介绍了其产生机理、材料选择和结构设计。本研究强调了氟基材料、多层固体电解质界面结构和聚合物复合材料在减缓枝晶发育和提高界面稳定性方面的重要意义。先进的表征技术,包括显微镜和光谱学,强调了研究人工固体电解质界面层的微观结构和离子传输特性。此外,密度泛函理论模拟检验,以预测理想的材料成分和离子迁移路径。本研究旨在为人工固体电解质界面工程的未来发展提供信息,以促进钠金属电池的性能,安全性和市场可行性的提高。人工固体电解质界面通过新的界面设计和集成分析,促进了下一代可持续能源存储系统的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信