A large scaling property of level sets for degenerate p $p$ -Laplacian equations with logarithmic BMO matrix weights

IF 0.8 3区 数学 Q2 MATHEMATICS
Thanh-Nhan Nguyen, Minh-Phuong Tran
{"title":"A large scaling property of level sets for degenerate \n \n p\n $p$\n -Laplacian equations with logarithmic BMO matrix weights","authors":"Thanh-Nhan Nguyen,&nbsp;Minh-Phuong Tran","doi":"10.1002/mana.70039","DOIUrl":null,"url":null,"abstract":"<p>In this study, we deal with generalized regularity properties for solutions to <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-Laplace equations with degenerate matrix weights. It has been already observed in previous interesting works that gaining Calderón–Zygmund estimates for nonlinear equations with degenerate weights under the so-called <span></span><math>\n <semantics>\n <mrow>\n <mi>log</mi>\n <mi>-</mi>\n <mi>BMO</mi>\n </mrow>\n <annotation>$\\log\\text{-}\\mathrm{BMO}$</annotation>\n </semantics></math> condition and minimal regularity assumption on the boundary. In this paper, we also follow this direction and extend general gradient estimates for level sets of the gradient of solutions up to more subtle function spaces. In particular, we construct a covering of the super-level sets of the spatial gradient <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mo>∇</mo>\n <mi>u</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$|\\nabla u|$</annotation>\n </semantics></math> with respect to a large scaling parameter via fractional maximal operators.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 10","pages":"3287-3306"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70039","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we deal with generalized regularity properties for solutions to p $p$ -Laplace equations with degenerate matrix weights. It has been already observed in previous interesting works that gaining Calderón–Zygmund estimates for nonlinear equations with degenerate weights under the so-called log - BMO $\log\text{-}\mathrm{BMO}$ condition and minimal regularity assumption on the boundary. In this paper, we also follow this direction and extend general gradient estimates for level sets of the gradient of solutions up to more subtle function spaces. In particular, we construct a covering of the super-level sets of the spatial gradient | u | $|\nabla u|$ with respect to a large scaling parameter via fractional maximal operators.

Abstract Image

具有对数BMO矩阵权值的退化p$ p$ -拉普拉斯方程的水平集的大尺度性质
在本研究中,我们处理了p $p$ -拉普拉斯方程解的广义正则性。在以前有趣的工作中已经观察到,在所谓的log - BMO $\log\text{-}\mathrm{BMO}$条件和边界上的最小正则性假设下,获得具有退化权的非线性方程的Calderón-Zygmund估计。在本文中,我们也沿着这个方向,将梯度解的水平集的一般梯度估计扩展到更细微的函数空间。特别地,我们通过分数极大算子构造了空间梯度|∇u | $|\nabla u|$相对于一个大尺度参数的超水平集的覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信