{"title":"Probabilistic Seismic Performance Assessment of an RC Bridge Considering Corrosion-Affected Bond-Slip and Steel Bar Buckling","authors":"Shaghayegh Abtahi, Yong Li","doi":"10.1002/eqe.70045","DOIUrl":null,"url":null,"abstract":"<p>Reinforced concrete (RC) bridges are designed to remain safe and functional for their lifetime, during which the impacts of aging may result in performance degradation. Steel bar corrosion is one of the most common causes of structural performance degradation in RC structures subjected to earthquakes in seismic-prone areas. Therefore, to ensure the adequate seismic performance of RC bridges over the course of their life, it is necessary to investigate the effect of corrosion on seismic performance prediction. To this end, this research work uses the recently developed tools for seismic performance assessment, including advanced finite element (FE) modeling strategies for corroded RC structures. The newly developed advanced FE modeling strategy can capture the corrosion impact on bonding between steel bars and surrounding concrete, as well as the vulnerability of steel bars to buckling, in addition to other effects on the steel bar cross-sectional area, cover concrete spalling, and confinement level for core concrete. Using these newly developed strategies, the seismic performance of an RC bridge, impacted by corrosion over the course of its life, is examined in a probabilistic framework. In particular, it has been demonstrated that the conventional FE modeling approach, which neglects the corrosion-affected bond-slip and steel bar buckling, would lead to underestimated seismic risk for corroded RC bridges, specifically the seismic risk associated with the post-peak behavior.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":"54 14","pages":"3594-3609"},"PeriodicalIF":5.0000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eqe.70045","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.70045","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Reinforced concrete (RC) bridges are designed to remain safe and functional for their lifetime, during which the impacts of aging may result in performance degradation. Steel bar corrosion is one of the most common causes of structural performance degradation in RC structures subjected to earthquakes in seismic-prone areas. Therefore, to ensure the adequate seismic performance of RC bridges over the course of their life, it is necessary to investigate the effect of corrosion on seismic performance prediction. To this end, this research work uses the recently developed tools for seismic performance assessment, including advanced finite element (FE) modeling strategies for corroded RC structures. The newly developed advanced FE modeling strategy can capture the corrosion impact on bonding between steel bars and surrounding concrete, as well as the vulnerability of steel bars to buckling, in addition to other effects on the steel bar cross-sectional area, cover concrete spalling, and confinement level for core concrete. Using these newly developed strategies, the seismic performance of an RC bridge, impacted by corrosion over the course of its life, is examined in a probabilistic framework. In particular, it has been demonstrated that the conventional FE modeling approach, which neglects the corrosion-affected bond-slip and steel bar buckling, would lead to underestimated seismic risk for corroded RC bridges, specifically the seismic risk associated with the post-peak behavior.
期刊介绍:
Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following:
ground motions for analysis and design
geotechnical earthquake engineering
probabilistic and deterministic methods of dynamic analysis
experimental behaviour of structures
seismic protective systems
system identification
risk assessment
seismic code requirements
methods for earthquake-resistant design and retrofit of structures.