Hanlin Yao, Xinyu You, Songqi Wu, Yunhao Wang, Di Hu, Yongsheng Ma, Jun Luo, Jie Qiu, Lihua Zhou
{"title":"Remolding Waste Liquid From the Zeolite Synthesis Process Into Wrinkled Dressings for Diabetic Wound Therapeutics With Immunomodulation","authors":"Hanlin Yao, Xinyu You, Songqi Wu, Yunhao Wang, Di Hu, Yongsheng Ma, Jun Luo, Jie Qiu, Lihua Zhou","doi":"10.1002/eem2.70072","DOIUrl":null,"url":null,"abstract":"<p>Chronic wounds resulting from diabetes are among the most common complications in diabetic patients. Attributable to poor local blood circulation and an increased risk of infection, these wounds heal slowly and are difficult to treat, posing a significant global health challenge. Herein, we achieved the green valorization of waste liquid from the natural clay-derived zeolite synthesis process and utilized it to fabricate metal-loaded aluminosilicate dressings with pronounced wrinkled structures (wrinkled Cu–AS, Ga–AS, and Ce–AS) through simple procedures. Wrinkled Cu–AS and Ce–AS exhibited strong antibacterial activity against <i>Escherichia coli</i>, <i>Staphylococcus aureus</i>, and <i>Candida albicans</i>, with wrinkled Ce–AS demonstrating notable antibiotic-like effects against <i>C. albicans</i>. Moreover, wrinkled Ce–AS enhanced hemostatic capability, promoted blood cell aggregation and activation, downregulated inflammatory markers (IL-6/TNFα), stimulated angiogenesis (VEGF), and shifted macrophage polarization toward the M2 phenotype, thereby facilitating rapid wound healing. Sprague–Dawley rats tolerated intraperitoneal administration well, with no observable toxicity as well as satisfactory hemolysis and cell compatibility. Notably, in the context of growing demand for natural clay utilization and zeolite production, this work presents a unique green approach for the efficient reuse of zeolite synthesis waste liquid, offering both environmental sustainability and commercial viability. This expands the repertoire of biomedical materials available for treating chronic diabetic wounds.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 6","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70072","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.70072","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic wounds resulting from diabetes are among the most common complications in diabetic patients. Attributable to poor local blood circulation and an increased risk of infection, these wounds heal slowly and are difficult to treat, posing a significant global health challenge. Herein, we achieved the green valorization of waste liquid from the natural clay-derived zeolite synthesis process and utilized it to fabricate metal-loaded aluminosilicate dressings with pronounced wrinkled structures (wrinkled Cu–AS, Ga–AS, and Ce–AS) through simple procedures. Wrinkled Cu–AS and Ce–AS exhibited strong antibacterial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans, with wrinkled Ce–AS demonstrating notable antibiotic-like effects against C. albicans. Moreover, wrinkled Ce–AS enhanced hemostatic capability, promoted blood cell aggregation and activation, downregulated inflammatory markers (IL-6/TNFα), stimulated angiogenesis (VEGF), and shifted macrophage polarization toward the M2 phenotype, thereby facilitating rapid wound healing. Sprague–Dawley rats tolerated intraperitoneal administration well, with no observable toxicity as well as satisfactory hemolysis and cell compatibility. Notably, in the context of growing demand for natural clay utilization and zeolite production, this work presents a unique green approach for the efficient reuse of zeolite synthesis waste liquid, offering both environmental sustainability and commercial viability. This expands the repertoire of biomedical materials available for treating chronic diabetic wounds.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.