Matthew Osmond, E. Magda Price, Orion J. Buske, Mackenzie Frew, Madeline Couse, Taila Hartley, Conor Klamann, Hannah G. B. H. Le, Jenny Xu, Delvin So, Anjali Jain, Kevin Lu, Kevin Mo, Hannah Wyllie, Erika Wall, Hannah G. Driver, Warren A. Cheung, Ana S. A. Cohen, Emily G. Farrow, Isabelle Thiffault, Care4Rare Canada Consortium, Andrei L. Turinsky, Tomi Pastinen, Michael Brudno, Kym M. Boycott
{"title":"One-Sided Matching Portal (OSMP): A Tool to Facilitate Rare Disease Patient Matchmaking","authors":"Matthew Osmond, E. Magda Price, Orion J. Buske, Mackenzie Frew, Madeline Couse, Taila Hartley, Conor Klamann, Hannah G. B. H. Le, Jenny Xu, Delvin So, Anjali Jain, Kevin Lu, Kevin Mo, Hannah Wyllie, Erika Wall, Hannah G. Driver, Warren A. Cheung, Ana S. A. Cohen, Emily G. Farrow, Isabelle Thiffault, Care4Rare Canada Consortium, Andrei L. Turinsky, Tomi Pastinen, Michael Brudno, Kym M. Boycott","doi":"10.1155/humu/5941599","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> Background</h3>\n \n <p>Genomic matchmaking—the process of identifying individuals with overlapping phenotypes and rare variants in the same gene—is an important tool facilitating gene discoveries for unsolved rare genetic disease (RGD) patients. Current approaches are two-sided, meaning both patients being matched must have the same candidate gene flagged. This limits the number of RGD patients eligible for matchmaking. One-sided matchmaking, in which a gene of interest is queried in the genome-wide sequencing data of RGD patients, would make matchmaking possible for previously undiscoverable individuals. However, platforms and workflows for this approach have not been well established.</p>\n </section>\n \n <section>\n \n <h3> Result</h3>\n \n <p>We released a beta version of the One-Sided Matching Portal (OSMP), a platform capable of performing one-sided matchmaking queries across thousands of participants stored in genomic databases. The OSMP returns variant-level and participant-level information on each variant occurrence (VO) identified in a queried gene. A workflow for one-sided matchmaking was developed so that researchers could prioritize the many VOs returned from a given query. This workflow was tested through pilot studies where two sets of genes were queried in over 2500 individuals: 130 genes that were newly associated with disease in OMIM and 178 novel candidate genes that were not associated with a disease-gene association in OMIM. These pilots returned a large number of initial VOs (12,872 and 20,308, respectively); however, the workflow filtered out over 99.8% of these VOs prior to review by a participant’s clinician. Filters on participant-level information, including variant zygosity, participant phenotype, and whether a variant was also present in unaffected participants, were effective at reducing the number of false positive matches.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>As demonstrated through the two pilot studies, one-sided matchmaking queries can be efficiently performed using the OSMP. The availability of variant-level and participant-level data is key to ensuring this approach is practical for researchers.</p>\n </section>\n </div>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":"2025 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/humu/5941599","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Mutation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/humu/5941599","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Genomic matchmaking—the process of identifying individuals with overlapping phenotypes and rare variants in the same gene—is an important tool facilitating gene discoveries for unsolved rare genetic disease (RGD) patients. Current approaches are two-sided, meaning both patients being matched must have the same candidate gene flagged. This limits the number of RGD patients eligible for matchmaking. One-sided matchmaking, in which a gene of interest is queried in the genome-wide sequencing data of RGD patients, would make matchmaking possible for previously undiscoverable individuals. However, platforms and workflows for this approach have not been well established.
Result
We released a beta version of the One-Sided Matching Portal (OSMP), a platform capable of performing one-sided matchmaking queries across thousands of participants stored in genomic databases. The OSMP returns variant-level and participant-level information on each variant occurrence (VO) identified in a queried gene. A workflow for one-sided matchmaking was developed so that researchers could prioritize the many VOs returned from a given query. This workflow was tested through pilot studies where two sets of genes were queried in over 2500 individuals: 130 genes that were newly associated with disease in OMIM and 178 novel candidate genes that were not associated with a disease-gene association in OMIM. These pilots returned a large number of initial VOs (12,872 and 20,308, respectively); however, the workflow filtered out over 99.8% of these VOs prior to review by a participant’s clinician. Filters on participant-level information, including variant zygosity, participant phenotype, and whether a variant was also present in unaffected participants, were effective at reducing the number of false positive matches.
Conclusion
As demonstrated through the two pilot studies, one-sided matchmaking queries can be efficiently performed using the OSMP. The availability of variant-level and participant-level data is key to ensuring this approach is practical for researchers.
期刊介绍:
Human Mutation is a peer-reviewed journal that offers publication of original Research Articles, Methods, Mutation Updates, Reviews, Database Articles, Rapid Communications, and Letters on broad aspects of mutation research in humans. Reports of novel DNA variations and their phenotypic consequences, reports of SNPs demonstrated as valuable for genomic analysis, descriptions of new molecular detection methods, and novel approaches to clinical diagnosis are welcomed. Novel reports of gene organization at the genomic level, reported in the context of mutation investigation, may be considered. The journal provides a unique forum for the exchange of ideas, methods, and applications of interest to molecular, human, and medical geneticists in academic, industrial, and clinical research settings worldwide.