Atmospheric Deposition, Shelf Sediment Supply, Riverine Input, and Redox Conditions Control Dissolved Manganese in the Indian Ocean

IF 5.5 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Nirmalya Malla, Sunil Kumar Singh
{"title":"Atmospheric Deposition, Shelf Sediment Supply, Riverine Input, and Redox Conditions Control Dissolved Manganese in the Indian Ocean","authors":"Nirmalya Malla,&nbsp;Sunil Kumar Singh","doi":"10.1029/2025GB008660","DOIUrl":null,"url":null,"abstract":"<p>Dissolved manganese (dMn) is an essential bioactive element required for marine organisms. Redox condition determines its solubility and its solid phase removal from seawater. It displays a typical scavenging type profile in the Indian Ocean with an elevated concentration in the Oxygen Minimum Zone (OMZ) of the Bay of Bengal (BoB). The surface dMn decreases southward in the BoB, and its concentration gradient correlates well with salinity because of the enormous riverine influx. Reductive dissolution of Iron-manganese (Fe-Mn) oxyhydroxides-rich sediments brought by the Ganga-Brahmaputra rivers enriches dMn in the bottom waters of the shelf regions (∼25 nM), which gets advected to the open ocean through cross-shelf transport. The atmospheric input is the prominent source of dMn in the BoB. Transport of the Indonesian Through Flow waters supplies high dMn in the surface waters of the Central Indian Ocean Basin. Internal cycling seems to control the dMn distribution in the water column in addition to its external sources. Water column denitrification increases dMn in the OMZ waters of the BoB through the reductive dissolution of sinking Mn oxide particles under the prevailing suboxic conditions. The presence of two sub-surface peaks of dMn associated with nitrite maxima suggests active denitrification in the OMZ waters of the BoB, similar to the Arabian Sea. The interaction of circulating fluid with subducting Fe-Mn-rich crusts enriches the deep water dMn in the Java Sumatra region. Further, the hydrothermal activity over the Southeast and Central Indian Ridges contributes significantly to the dMn budget of the deeper waters.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 10","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GB008660","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Dissolved manganese (dMn) is an essential bioactive element required for marine organisms. Redox condition determines its solubility and its solid phase removal from seawater. It displays a typical scavenging type profile in the Indian Ocean with an elevated concentration in the Oxygen Minimum Zone (OMZ) of the Bay of Bengal (BoB). The surface dMn decreases southward in the BoB, and its concentration gradient correlates well with salinity because of the enormous riverine influx. Reductive dissolution of Iron-manganese (Fe-Mn) oxyhydroxides-rich sediments brought by the Ganga-Brahmaputra rivers enriches dMn in the bottom waters of the shelf regions (∼25 nM), which gets advected to the open ocean through cross-shelf transport. The atmospheric input is the prominent source of dMn in the BoB. Transport of the Indonesian Through Flow waters supplies high dMn in the surface waters of the Central Indian Ocean Basin. Internal cycling seems to control the dMn distribution in the water column in addition to its external sources. Water column denitrification increases dMn in the OMZ waters of the BoB through the reductive dissolution of sinking Mn oxide particles under the prevailing suboxic conditions. The presence of two sub-surface peaks of dMn associated with nitrite maxima suggests active denitrification in the OMZ waters of the BoB, similar to the Arabian Sea. The interaction of circulating fluid with subducting Fe-Mn-rich crusts enriches the deep water dMn in the Java Sumatra region. Further, the hydrothermal activity over the Southeast and Central Indian Ridges contributes significantly to the dMn budget of the deeper waters.

Abstract Image

大气沉积、陆架沉积物供应、河流输入和氧化还原条件控制印度洋溶解锰
溶解锰(dMn)是海洋生物必需的生物活性元素。氧化还原条件决定了其溶解度和固相去除率。在孟加拉湾(BoB)氧最低带(OMZ)浓度升高的情况下,印度洋呈现典型的扫食型剖面。表层dMn向南减少,由于大量的河流流入,其浓度梯度与盐度密切相关。Ganga-Brahmaputra河流带来的富含铁锰(Fe-Mn)氢氧化物的沉积物的还原溶解使大陆架区域底部水域(~ 25 nM)的dMn富集,并通过跨大陆架运输平流到开阔的海洋。大气输入是BoB中dMn的主要来源。印尼水流的输送为印度洋中部海盆表层提供了高dMn。除了外部来源外,内部循环似乎还控制着水柱中的dMn分布。在普遍的缺氧条件下,水柱反硝化通过还原溶解下沉的氧化锰颗粒,增加了BoB的OMZ水中的dMn。与亚硝酸盐最大值相关的两个dMn次表面峰的存在表明,在BoB的OMZ水域中存在活跃的反硝化作用,类似于阿拉伯海。循环流体与俯冲富铁锰地壳的相互作用使爪哇-苏门答腊地区深水dMn富集。此外,印度东南部和中部脊的热液活动对较深水域的dMn收支有重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信