A logarithmically deformed entropy functional

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
José Weberszpil
{"title":"A logarithmically deformed entropy functional","authors":"José Weberszpil","doi":"10.1016/j.physa.2025.131029","DOIUrl":null,"url":null,"abstract":"<div><div>Stretched exponential distributions appear in disordered systems, glassy dynamics, and anomalous diffusion, yet their thermodynamic origin is often phenomenological. In this work, we propose a deformed entropy functional of the form <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>γ</mi></mrow></msub><mrow><mo>[</mo><mi>p</mi><mo>]</mo></mrow><mo>=</mo><mo>−</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mfenced><mrow><mo>ln</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mi>γ</mi></mrow></msup></mrow></math></span>, which generalizes the Shannon entropy through a logarithmic deformation parameter <span><math><mi>γ</mi></math></span>. We show that, when maximized under standard constraints, this entropy leads asymptotically to stretched exponential (Weibull-type) distributions without requiring nonlinear constraints. The entropy is non-additive for <span><math><mrow><mi>γ</mi><mo>≠</mo><mn>1</mn></mrow></math></span>, tunably extensive, and concave in well-defined regimes. We establish its Lesche stability and derive its asymptotic variational behavior analytically. This framework offers a consistent thermodynamic foundation for modeling systems with memory, heterogeneity, or long-range correlations. The approach extends the Havrda–Charvát–Tsallis paradigm and contributes to the ongoing development of generalized thermodynamics by introducing a stretched-logarithmic entropy consistent with stretched exponential statistics.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"680 ","pages":"Article 131029"},"PeriodicalIF":3.1000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125006818","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stretched exponential distributions appear in disordered systems, glassy dynamics, and anomalous diffusion, yet their thermodynamic origin is often phenomenological. In this work, we propose a deformed entropy functional of the form Sγ[p]=ipiln1pi1/γ, which generalizes the Shannon entropy through a logarithmic deformation parameter γ. We show that, when maximized under standard constraints, this entropy leads asymptotically to stretched exponential (Weibull-type) distributions without requiring nonlinear constraints. The entropy is non-additive for γ1, tunably extensive, and concave in well-defined regimes. We establish its Lesche stability and derive its asymptotic variational behavior analytically. This framework offers a consistent thermodynamic foundation for modeling systems with memory, heterogeneity, or long-range correlations. The approach extends the Havrda–Charvát–Tsallis paradigm and contributes to the ongoing development of generalized thermodynamics by introducing a stretched-logarithmic entropy consistent with stretched exponential statistics.
一个对数变形的熵函数
拉伸指数分布出现在无序系统、玻璃动力学和异常扩散中,但它们的热力学起源往往是现象学的。在这项工作中,我们提出了一个形式为Sγ[p]=−∑ipiln1pi1/γ的变形熵函数,它通过对数变形参数γ推广了香农熵。我们表明,当在标准约束下最大化时,该熵会渐近地导致拉伸指数(威布尔型)分布,而不需要非线性约束。当γ≠1时,熵是非加性的,可调扩展的,并且在定义良好的区域内是凹的。建立了它的Lesche稳定性,并解析地导出了它的渐近变分性。这个框架为具有记忆、异构或远程相关性的系统建模提供了一致的热力学基础。该方法扩展了Havrda-Charvát-Tsallis范式,并通过引入与拉伸指数统计一致的拉伸对数熵,为广义热力学的持续发展做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信