State of charge estimation of lithium-ion batteries based on a combination of Convolutional Neural Networks and Temporal Kolmogorov–Arnold Networks

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Zhiqiang Liu , Chong Kuai , Gang Wu , Ashun Zang
{"title":"State of charge estimation of lithium-ion batteries based on a combination of Convolutional Neural Networks and Temporal Kolmogorov–Arnold Networks","authors":"Zhiqiang Liu ,&nbsp;Chong Kuai ,&nbsp;Gang Wu ,&nbsp;Ashun Zang","doi":"10.1016/j.est.2025.118629","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional methods cannot effectively address the nonlinear challenges in State of Charge (SOC) estimation of lithium-ion batteries for electric vehicle(EV). The emerging Kolmogorov–Arnold Networks (KAN) have demonstrated strong performance in handling nonlinearity and time series problems. However, the learnable spline functions in the KAN and the increased parameters contribute to a slower training speed. This study proposes a new neural network configuration combining Convolutional Neural Networks (CNN) and Temporal Kolmogorov–Arnold Networks (TKAN) to solve these problems. This configuration not only enhances the estimation accuracy of the SOC for lithium-ion batteries but also accelerates the training speed. The proposed model outperforms CNN+(Gated Recurrent Units)GRU and CNN+(Long Short-Term Memory)LSTM with the same training strategy and hyperparameters across three metrics: RMSE, MAE and R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Additionally, the model demonstrates good robustness when the initial SOC is not 100%, further demonstrating the potentiality of KAN for SOC estimation of lithium-ion batteries. The paper also discusses the impact of pooling layer configurations in the CNN on the performance of the model. Compared with a single TKAN, the proposed model not only enhances the training speed but also improves the accuracy. Furthermore, when comparing different pooling layer configurations, our model demonstrates greater suitability for practical SOC estimation of lithium-ion batteries.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"139 ","pages":"Article 118629"},"PeriodicalIF":8.9000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25033420","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional methods cannot effectively address the nonlinear challenges in State of Charge (SOC) estimation of lithium-ion batteries for electric vehicle(EV). The emerging Kolmogorov–Arnold Networks (KAN) have demonstrated strong performance in handling nonlinearity and time series problems. However, the learnable spline functions in the KAN and the increased parameters contribute to a slower training speed. This study proposes a new neural network configuration combining Convolutional Neural Networks (CNN) and Temporal Kolmogorov–Arnold Networks (TKAN) to solve these problems. This configuration not only enhances the estimation accuracy of the SOC for lithium-ion batteries but also accelerates the training speed. The proposed model outperforms CNN+(Gated Recurrent Units)GRU and CNN+(Long Short-Term Memory)LSTM with the same training strategy and hyperparameters across three metrics: RMSE, MAE and R2. Additionally, the model demonstrates good robustness when the initial SOC is not 100%, further demonstrating the potentiality of KAN for SOC estimation of lithium-ion batteries. The paper also discusses the impact of pooling layer configurations in the CNN on the performance of the model. Compared with a single TKAN, the proposed model not only enhances the training speed but also improves the accuracy. Furthermore, when comparing different pooling layer configurations, our model demonstrates greater suitability for practical SOC estimation of lithium-ion batteries.
基于卷积神经网络和时间Kolmogorov-Arnold网络的锂离子电池充电状态估计
传统方法无法有效解决电动汽车锂离子电池荷电状态(SOC)估计的非线性问题。新兴的Kolmogorov-Arnold网络(KAN)在处理非线性和时间序列问题方面表现出了很强的性能。然而,KAN中可学习的样条函数和参数的增加导致训练速度变慢。本文提出了一种结合卷积神经网络(CNN)和时间Kolmogorov-Arnold网络(TKAN)的神经网络结构来解决这些问题。这种配置不仅提高了锂离子电池SOC的估计精度,而且加快了训练速度。该模型在RMSE、MAE和R2三个指标上具有相同的训练策略和超参数,优于CNN+(门控循环单元)GRU和CNN+(长短期记忆)LSTM。此外,当初始荷电状态不是100%时,该模型显示出良好的鲁棒性,进一步证明了KAN在锂离子电池荷电状态估计中的潜力。本文还讨论了CNN池化层配置对模型性能的影响。与单一TKAN模型相比,该模型不仅提高了训练速度,而且提高了训练精度。此外,当比较不同池化层配置时,我们的模型更适合于锂离子电池的实际SOC估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信