Multi-stage wind speed prediction with CEEMDAN-SE-IDBO-LSTM based on rolling decomposition

IF 9.4 1区 工程技术 Q1 ENERGY & FUELS
Jiawei Tan , Hong Zhu , Jingrui Zhang , Houde Liu
{"title":"Multi-stage wind speed prediction with CEEMDAN-SE-IDBO-LSTM based on rolling decomposition","authors":"Jiawei Tan ,&nbsp;Hong Zhu ,&nbsp;Jingrui Zhang ,&nbsp;Houde Liu","doi":"10.1016/j.energy.2025.138741","DOIUrl":null,"url":null,"abstract":"<div><div>To address the problem of inaccurate wind speed prediction for wind turbines, this paper proposes a multi-stage coupled “Decomposition-Reconstruction-Optimization-Prediction” approach named CEEMDAN-SE-IDBO-LSTM (CSIL). The method first combines Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and rolling decomposition strategy to prevent information leakage in traditional decomposition. The wind speed components are standardized into high, medium, and low-frequency categories through Sample Entropy-based reconstruction. Subsequently, an Improved Dung Beetle Optimizer (IDBO) combining Halton sequence initialization, mirror reflection obstacle avoidance, and hybrid Gaussian-Cauchy mutation perturbation strategies is applied to optimize LSTM hyperparameters. The optimized LSTM models then process different frequency components for enhanced prediction. Experimental results indicate that the proposed multi-stage method achieves MAE, RMSE, and MAPE values of 0.4342 m/s, 0.5647 m/s, and 3.8726 % respectively, with R<sup>2</sup>of 0.8003. This represents significant performance improvements over baseline models and outperforms existing mainstream wind speed prediction methods in both accuracy and stability.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"338 ","pages":"Article 138741"},"PeriodicalIF":9.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036054422504383X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To address the problem of inaccurate wind speed prediction for wind turbines, this paper proposes a multi-stage coupled “Decomposition-Reconstruction-Optimization-Prediction” approach named CEEMDAN-SE-IDBO-LSTM (CSIL). The method first combines Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and rolling decomposition strategy to prevent information leakage in traditional decomposition. The wind speed components are standardized into high, medium, and low-frequency categories through Sample Entropy-based reconstruction. Subsequently, an Improved Dung Beetle Optimizer (IDBO) combining Halton sequence initialization, mirror reflection obstacle avoidance, and hybrid Gaussian-Cauchy mutation perturbation strategies is applied to optimize LSTM hyperparameters. The optimized LSTM models then process different frequency components for enhanced prediction. Experimental results indicate that the proposed multi-stage method achieves MAE, RMSE, and MAPE values of 0.4342 m/s, 0.5647 m/s, and 3.8726 % respectively, with R2of 0.8003. This represents significant performance improvements over baseline models and outperforms existing mainstream wind speed prediction methods in both accuracy and stability.
基于滚动分解的CEEMDAN-SE-IDBO-LSTM多级风速预测
针对风力机风速预测不准确的问题,本文提出了一种多级耦合“分解-重构-优化-预测”方法,命名为CEEMDAN-SE-IDBO-LSTM (CSIL)。该方法首先结合了自适应噪声的完全集成经验模态分解(CEEMDAN)和滚动分解策略,防止了传统分解中的信息泄漏;通过基于样本熵的重构,将风速分量标准化为高、中、低频三类。随后,结合Halton序列初始化、镜像反射避障和混合高斯-柯西突变摄动策略的改进蜣螂优化器(IDBO)对LSTM超参数进行了优化。然后,优化后的LSTM模型处理不同的频率分量以增强预测。实验结果表明,该方法的MAE、RMSE和MAPE分别为0.4342 m/s、0.5647 m/s和3.8726%,r2为0.8003。这代表了对基线模型的显著性能改进,并且在准确性和稳定性方面优于现有主流风速预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信