Experimental and numerical analysis of Tuned Sloshing Dampers and Liquid Column Vibration Absorbers for the vibration control of a multi storey frame using fluids of different viscosities

IF 7.4 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Andrea Vázquez-Greciano , Nicola Buratti , Antonio Aznar López , Jesús María Ortiz Herrera
{"title":"Experimental and numerical analysis of Tuned Sloshing Dampers and Liquid Column Vibration Absorbers for the vibration control of a multi storey frame using fluids of different viscosities","authors":"Andrea Vázquez-Greciano ,&nbsp;Nicola Buratti ,&nbsp;Antonio Aznar López ,&nbsp;Jesús María Ortiz Herrera","doi":"10.1016/j.jobe.2025.114268","DOIUrl":null,"url":null,"abstract":"<div><div>Tuned Liquid Dampers (TLDs) dissipate energy through the out-of-phase fluid motion inside a container relative to a structure. This study experimentally and numerically analyses the two main TLD configurations: Tuned Sloshing Dampers (TSDs) and Liquid Column Vibration Absorbers (LCVAs).</div><div>Shake table tests are used to evaluate the Frequency Response Function of a four-story scaled frame with and without TSDs and LCVAs, comparing the effect of water and two commercially available non-organic fluids of diverse viscosities under different horizontal harmonic base excitation amplitudes.</div><div>A numerical analysis supports the interpretation of the influence of key parameters – mass, damping and frequency of the device – and evaluates the precision of existing formulations found in the literature and codes. For TSDs, the experimentally measured and numerically defined mass and frequency agree with the literature. For LCVAs the existing mass participation prediction does not align with the results: only 25 % of the total fluid mass, corresponding to the fluid inside the columns, is effective. Additionally, a new LCVA frequency formulation is proposed, reducing prediction error from 15 to 2 %. The amplitude and viscosity-dependence of the damping ratio lead to defining different optimal fluid selections depending on the container: high viscosity fluids improve surface control and vibration suppression for TSDs, reducing both the response at resonance (99.5 %) and the maximum response (84 %). For LCVAs, higher viscosity causes excess damping and non-optimum performance. In this case water yields the best resonance reduction (98 %). These findings are aimed at refining the practical application of TLDs and improving their numerical definition.</div></div>","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"114 ","pages":"Article 114268"},"PeriodicalIF":7.4000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352710225025057","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tuned Liquid Dampers (TLDs) dissipate energy through the out-of-phase fluid motion inside a container relative to a structure. This study experimentally and numerically analyses the two main TLD configurations: Tuned Sloshing Dampers (TSDs) and Liquid Column Vibration Absorbers (LCVAs).
Shake table tests are used to evaluate the Frequency Response Function of a four-story scaled frame with and without TSDs and LCVAs, comparing the effect of water and two commercially available non-organic fluids of diverse viscosities under different horizontal harmonic base excitation amplitudes.
A numerical analysis supports the interpretation of the influence of key parameters – mass, damping and frequency of the device – and evaluates the precision of existing formulations found in the literature and codes. For TSDs, the experimentally measured and numerically defined mass and frequency agree with the literature. For LCVAs the existing mass participation prediction does not align with the results: only 25 % of the total fluid mass, corresponding to the fluid inside the columns, is effective. Additionally, a new LCVA frequency formulation is proposed, reducing prediction error from 15 to 2 %. The amplitude and viscosity-dependence of the damping ratio lead to defining different optimal fluid selections depending on the container: high viscosity fluids improve surface control and vibration suppression for TSDs, reducing both the response at resonance (99.5 %) and the maximum response (84 %). For LCVAs, higher viscosity causes excess damping and non-optimum performance. In this case water yields the best resonance reduction (98 %). These findings are aimed at refining the practical application of TLDs and improving their numerical definition.
不同粘度流体对多层框架振动控制的调谐晃动阻尼器和液柱减振器的实验与数值分析
调谐液体阻尼器(tld)通过容器内相对于结构的非相流体运动来耗散能量。本文对两种主要的TLD结构进行了实验和数值分析:调谐晃动阻尼器(TSDs)和液柱减振器(LCVAs)。通过振动台试验,对一个四层尺度框架在不同水平谐基激励幅值下,有无TSDs和lcva的频响函数进行了评价,比较了水和两种不同粘度的市售非有机流体的影响。数值分析支持对关键参数(质量、阻尼和设备频率)影响的解释,并评估了文献和规范中现有公式的精度。对于TSDs,实验测量和数值定义的质量和频率与文献一致。对于LCVAs,现有的质量参与预测与结果不一致:只有总流体质量的25%(对应于柱内的流体)是有效的。此外,提出了一种新的LCVA频率公式,将预测误差从15%降低到2%。阻尼比的振幅和粘度依赖关系导致根据容器定义不同的最佳流体选择:高粘度流体改善了tsd的表面控制和振动抑制,降低了共振响应(99.5%)和最大响应(84%)。对于LCVAs,较高的粘度会导致多余的阻尼和非最佳性能。在这种情况下,水产生最好的共振减少(98%)。这些发现旨在改进tld的实际应用并改进其数值定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of building engineering
Journal of building engineering Engineering-Civil and Structural Engineering
CiteScore
10.00
自引率
12.50%
发文量
1901
审稿时长
35 days
期刊介绍: The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信