CO2 methanation mechanism on Ru4/Cr2O3 and factors for selective hydrogenation on supported metal catalysts: A DFT study

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xiaowei Wang , Canxin Hua , Meifeng Ma , Xiuzhong Fang , Xiang Wang , Xianglan Xu
{"title":"CO2 methanation mechanism on Ru4/Cr2O3 and factors for selective hydrogenation on supported metal catalysts: A DFT study","authors":"Xiaowei Wang ,&nbsp;Canxin Hua ,&nbsp;Meifeng Ma ,&nbsp;Xiuzhong Fang ,&nbsp;Xiang Wang ,&nbsp;Xianglan Xu","doi":"10.1016/j.surfin.2025.107771","DOIUrl":null,"url":null,"abstract":"<div><div>Unraveling reaction mechanisms and identifying the drivers of selectivity remain grand challenges in heterogeneous catalysis. Here, density functional theory calculations were performed to investigate CO<sub>2</sub> methanation on an oxygen-deficient Cr<sub>2</sub>O<sub>3</sub> (012)-supported Ru<sub>4</sub> cluster (Ru<sub>4</sub>/Cr<sub>2</sub>O<sub>3</sub>–O<sub>v</sub>) and to decode the origin of product selectivity across M<sub>4</sub>/Cr<sub>2</sub>O<sub>3</sub>–O<sub>v</sub> (M = Ru, Ni, Pt) surfaces. CO<sub>2</sub> adsorbs at bridge Ru sites and is readily activated, while H₂ dissociates spontaneously on Ru sites. The CO* pathway that CO<sub>2</sub>* → CO* → HCO* → CH<sub>2</sub>O* → CH<sub>2</sub>* → CH<sub>4</sub>, is the most favorable route, with the dissociation of CO<sub>2</sub>* and deoxygenation of CH<sub>2</sub>O* acting as rate-determining steps with energy barriers of approximately 1.0 eV. Comparative analysis shows that the oxygen adsorption energy on M<sub>4</sub>/Cr<sub>2</sub>O<sub>3</sub>–O<sub>v</sub> dictates CO<sub>2</sub> hydrogenation selectivity. Moreover, a smaller work function of metal strengthens O* binding and thereby promotes CH<sub>4</sub> selectivity. Conversely, a bigger work function weakens O* adsorption and favors CO formation. These findings establish the work function of metals as an intrinsic, experimentally accessible descriptor for tuning CO<sub>2</sub> hydrogenation selectivity, guiding the rational design of supported metal catalysts.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"75 ","pages":"Article 107771"},"PeriodicalIF":6.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023025020231","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Unraveling reaction mechanisms and identifying the drivers of selectivity remain grand challenges in heterogeneous catalysis. Here, density functional theory calculations were performed to investigate CO2 methanation on an oxygen-deficient Cr2O3 (012)-supported Ru4 cluster (Ru4/Cr2O3–Ov) and to decode the origin of product selectivity across M4/Cr2O3–Ov (M = Ru, Ni, Pt) surfaces. CO2 adsorbs at bridge Ru sites and is readily activated, while H₂ dissociates spontaneously on Ru sites. The CO* pathway that CO2* → CO* → HCO* → CH2O* → CH2* → CH4, is the most favorable route, with the dissociation of CO2* and deoxygenation of CH2O* acting as rate-determining steps with energy barriers of approximately 1.0 eV. Comparative analysis shows that the oxygen adsorption energy on M4/Cr2O3–Ov dictates CO2 hydrogenation selectivity. Moreover, a smaller work function of metal strengthens O* binding and thereby promotes CH4 selectivity. Conversely, a bigger work function weakens O* adsorption and favors CO formation. These findings establish the work function of metals as an intrinsic, experimentally accessible descriptor for tuning CO2 hydrogenation selectivity, guiding the rational design of supported metal catalysts.

Abstract Image

负载型金属催化剂上Ru4/Cr2O3的CO2甲烷化机理及选择性加氢因素的DFT研究
揭示反应机制和确定选择性的驱动因素仍然是多相催化的巨大挑战。本文通过密度泛函理论计算,研究了缺氧Cr2O3(012)支持的Ru4簇(Ru4/Cr2O3 - ov)上的CO2甲烷化反应,并解析了M4/Cr2O3 - ov (M = Ru, Ni, Pt)表面产物选择性的来源。CO2吸附在桥式Ru位点上,容易被活化,而H₂在Ru位点上自发离解。CO2*→CO*→HCO*→CH2O*→CH2*→CH4的CO*途径是最有利的途径,其中CO2*的解离和CH2O*的脱氧是决定速率的步骤,能垒约为1.0 eV。对比分析表明,M4/ Cr2O3-Ov对氧的吸附能决定了CO2加氢选择性。此外,金属的功函数更小,加强了O*结合,从而促进了CH4的选择性。反之,功函数越大,O*吸附减弱,有利于CO生成。这些发现建立了金属的功函数作为调节CO2加氢选择性的内在的、实验上可获得的描述符,指导了负载金属催化剂的合理设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信