Improved WENO finite difference method: Treating the multiple discontinuities

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Jian Ming Wu, Cong Huang
{"title":"Improved WENO finite difference method: Treating the multiple discontinuities","authors":"Jian Ming Wu,&nbsp;Cong Huang","doi":"10.1016/j.amc.2025.129762","DOIUrl":null,"url":null,"abstract":"<div><div>The classical weighted essentially non-oscillatory method (WENO) performs well in solving hyperbolic conservation laws, but may encounter the numerical instability while treating multiple discontinuities due to the use of equal-width substencils. In order to overcome this problem, we propose an improved WENO finite difference method, namely WENO-rp2. The WENO-rp2 uses <span><math><mrow><mi>r</mi><mo>+</mo><mn>2</mn></mrow></math></span> candidate substencils, which can be divided into two groups, the first group <span><math><msup><mi>S</mi><mn>1</mn></msup></math></span> consists of the classical r r-point substencils and the other group <span><math><msup><mi>S</mi><mn>2</mn></msup></math></span> consists of 2 2-point substencils. Then by introducing a TENO-like switching mechanism, <span><math><msup><mi>S</mi><mn>2</mn></msup></math></span> is used for the final WENO-rp2 reconstruction if the classical one can not handle the multiple discontinuities or is too biased, otherwise <span><math><msup><mi>S</mi><mn>1</mn></msup></math></span> is used. By doing so, the WENO-rp2 maintains the optimal <span><math><mrow><mo>(</mo><mn>2</mn><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>th order of accuracy in the smooth region, avoids the non-physical oscillation near multiple discontinuities, and is more central, but does not significantly increase the computational cost and numerical dissipation.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"512 ","pages":"Article 129762"},"PeriodicalIF":3.4000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325004874","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The classical weighted essentially non-oscillatory method (WENO) performs well in solving hyperbolic conservation laws, but may encounter the numerical instability while treating multiple discontinuities due to the use of equal-width substencils. In order to overcome this problem, we propose an improved WENO finite difference method, namely WENO-rp2. The WENO-rp2 uses r+2 candidate substencils, which can be divided into two groups, the first group S1 consists of the classical r r-point substencils and the other group S2 consists of 2 2-point substencils. Then by introducing a TENO-like switching mechanism, S2 is used for the final WENO-rp2 reconstruction if the classical one can not handle the multiple discontinuities or is too biased, otherwise S1 is used. By doing so, the WENO-rp2 maintains the optimal (2r1)th order of accuracy in the smooth region, avoids the non-physical oscillation near multiple discontinuities, and is more central, but does not significantly increase the computational cost and numerical dissipation.
改进WENO有限差分法:处理多重不连续点
经典加权基本非振荡法(WENO)在求解双曲型守恒律方面表现良好,但由于使用等宽质料,在处理多个不连续点时可能会遇到数值不稳定性问题。为了克服这一问题,我们提出了一种改进的WENO有限差分法,即WENO-rp2。WENO-rp2使用了r+2个候选材料,可分为两组,第一组S1由经典的r点材料组成,另一组S2由2个2点材料组成。然后,通过引入类似teno的开关机制,如果经典的WENO-rp2不能处理多个不连续或偏差过大,则使用S2进行最终的WENO-rp2重构,否则使用S1。通过这样做,WENO-rp2在光滑区域保持了最优(2r−1)阶精度,避免了多个不连续点附近的非物理振荡,更加中心化,但没有显著增加计算成本和数值耗散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信