Mix design optimization and mechanism analysis of alkali-activated lithium slag–blast furnace slag composite binders

IF 7.4 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Yuling Zhang , Jinliang Wu , Yifan Huang , Xin Ren , Wenlin Chen , Peng Wang , Xun Wang
{"title":"Mix design optimization and mechanism analysis of alkali-activated lithium slag–blast furnace slag composite binders","authors":"Yuling Zhang ,&nbsp;Jinliang Wu ,&nbsp;Yifan Huang ,&nbsp;Xin Ren ,&nbsp;Wenlin Chen ,&nbsp;Peng Wang ,&nbsp;Xun Wang","doi":"10.1016/j.jobe.2025.114304","DOIUrl":null,"url":null,"abstract":"<div><div>The large-scale production of lithium salts has led to the accumulation of lithium slag (LS), an industrial by-product rich in SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> with potential cementitious activity. This study used LS and ground granulated blast furnace slag (GGBFS) as aluminosilicate precursors to prepare alkali-activated materials (AAMs). An L<sub>9</sub> (3<sup>4</sup>) orthogonal design evaluated the effects of LS content, water-to-binder (W/B) ratio, and silicon-to-aluminum (Si/Al) ratio on workability, mechanical properties, and microstructure. Results indicate that the Si/Al ratio was the key factor controlling fluidity and strength. Increasing Si/Al from 2.4 to 3.2 raised fluidity by 40.67 mm and extended setting time by over 100 %. Optimal strength was achieved at a Si/Al ratio of 2.4, LS content of 30 %, and W/B of 0.35. Under this mix proportion, the AAMs achieved a 28-day compressive strength and flexural strength of 73.5 MPa and 5.1 MPa, respectively. SEM, XRD, and FTIR analyses confirmed that Si/Al = 2.4 favored a dense, highly cross-linked N(C)-A-S-H gel network. Solid-state NMR revealed the highest proportions of Q<sup>1</sup> and Q<sup>2</sup> species, the longest mean chain length (MCL = 14.95), and dominant Al(IV) tetrahedral coordination (83.15 %) under this condition, indicating excellent polymerization and connectivity. Higher Si/Al ratios caused excessive silicate polymerization, incomplete reactions, increased porosity, and aluminum coordination shifted from ordered Al(IV) to disordered Al(V)/Al(VI), weakening the gel and mechanical properties. This study provides new insights into the design of AAMs incorporating multiple industrial solid wastes and systematically elucidates the influence mechanisms of key parameters on their performance, supporting the sustainable utilization of LS.</div></div>","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"114 ","pages":"Article 114304"},"PeriodicalIF":7.4000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352710225025410","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The large-scale production of lithium salts has led to the accumulation of lithium slag (LS), an industrial by-product rich in SiO2 and Al2O3 with potential cementitious activity. This study used LS and ground granulated blast furnace slag (GGBFS) as aluminosilicate precursors to prepare alkali-activated materials (AAMs). An L9 (34) orthogonal design evaluated the effects of LS content, water-to-binder (W/B) ratio, and silicon-to-aluminum (Si/Al) ratio on workability, mechanical properties, and microstructure. Results indicate that the Si/Al ratio was the key factor controlling fluidity and strength. Increasing Si/Al from 2.4 to 3.2 raised fluidity by 40.67 mm and extended setting time by over 100 %. Optimal strength was achieved at a Si/Al ratio of 2.4, LS content of 30 %, and W/B of 0.35. Under this mix proportion, the AAMs achieved a 28-day compressive strength and flexural strength of 73.5 MPa and 5.1 MPa, respectively. SEM, XRD, and FTIR analyses confirmed that Si/Al = 2.4 favored a dense, highly cross-linked N(C)-A-S-H gel network. Solid-state NMR revealed the highest proportions of Q1 and Q2 species, the longest mean chain length (MCL = 14.95), and dominant Al(IV) tetrahedral coordination (83.15 %) under this condition, indicating excellent polymerization and connectivity. Higher Si/Al ratios caused excessive silicate polymerization, incomplete reactions, increased porosity, and aluminum coordination shifted from ordered Al(IV) to disordered Al(V)/Al(VI), weakening the gel and mechanical properties. This study provides new insights into the design of AAMs incorporating multiple industrial solid wastes and systematically elucidates the influence mechanisms of key parameters on their performance, supporting the sustainable utilization of LS.
碱活化锂渣-高炉渣复合粘结剂的配合比设计优化及机理分析
锂盐的大规模生产导致锂渣(LS)的积累,这是一种富含SiO2和Al2O3的工业副产物,具有潜在的胶凝活性。本研究以LS和矿渣为原料制备了碱活化材料(AAMs)。L9(34)正交设计评估了LS含量、水胶比(W/B)和硅铝比(Si/Al)对可加工性、力学性能和微观结构的影响。结果表明,硅铝比是控制流动性和强度的关键因素。Si/Al比值从2.4提高到3.2,流动性提高了40.67 mm,凝固时间延长了100%以上。当硅铝比为2.4、LS含量为30%、W/B为0.35时,强度达到最佳。在此配合比下,AAMs的28天抗压强度和抗弯强度分别为73.5 MPa和5.1 MPa。SEM、XRD和FTIR分析证实,Si/Al = 2.4有利于形成致密的、高度交联的N(C) a - s- h凝胶网络。固体核磁共振显示,在此条件下,Q1和Q2的比例最高,平均链长最长(MCL = 14.95),优势Al(IV)四面体配位(83.15%),具有良好的聚合和连接性能。较高的Si/Al比导致硅酸盐聚合过度,反应不完全,孔隙率增加,铝配位从有序Al(IV)转变为无序Al(V)/Al(VI),降低了凝胶性能和力学性能。本研究为多种工业固体废弃物的AAMs设计提供了新的见解,并系统地阐明了关键参数对其性能的影响机制,为LS的可持续利用提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of building engineering
Journal of building engineering Engineering-Civil and Structural Engineering
CiteScore
10.00
自引率
12.50%
发文量
1901
审稿时长
35 days
期刊介绍: The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信