Precipitation of the ultrafine equiaxial near-spherical gibbsite with low oil absorption value by adding mixed seeds

IF 4.8 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Jinquan Wen, Guihua Liu, Tiangui Qi, Qiusheng Zhou, Zhihong Peng, Xiaobin Li, Yilin Wang, Leiting Shen
{"title":"Precipitation of the ultrafine equiaxial near-spherical gibbsite with low oil absorption value by adding mixed seeds","authors":"Jinquan Wen,&nbsp;Guihua Liu,&nbsp;Tiangui Qi,&nbsp;Qiusheng Zhou,&nbsp;Zhihong Peng,&nbsp;Xiaobin Li,&nbsp;Yilin Wang,&nbsp;Leiting Shen","doi":"10.1016/j.hydromet.2025.106586","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrafine, near-spherical gibbsite with a low oil-absorption value hold significant potential for use in advanced flame-retardant fillers, polishing materials and dense alumina-bearing ceramics owing to its regular morphology, high dispersibility and good flowability. In this study, ultrafine equiaxial near-spherical gibbsite with a medium particle size (d<sub>50</sub>) of 359 nm and an oil-absorption values of 25.0 mL/100 g was precipitated by seeded precipitation from sodium aluminate solution. The mixed seeds, comprising bayerite and gibbsite, were prepared by the addition of NaHCO<sub>3</sub>, Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, and H<sub>2</sub>O<sub>2</sub>, respectively. A high bayerite content in the NaHCO<sub>3</sub>-induced seeds, combined with significant supersaturation fluctuations, enabled a precipitation efficiency exceeding 51 % at an initial temperature of 80 °C for 35 h. Preferential growth of the (110), (100), and (001) planes occurred during the early stage, followed by the emergence of the (101) and (112) planes in the mid-to-late stage. High supersaturation from bayerite dissolution and adsorption of Al(OH)<sub>4</sub><sup>−</sup> ions promoted the development of (001), (110), (100), (101), and (112) planes, resulting in the formation of equiaxial near-spherical gibbsite. Furthermore, the low surface energy and high zeta potential of the well-crystallized gibbsite precipitated from NaHCO<sub>3</sub>-induced seeds contributed to its low oil absorption. These findings indicate that the presence of bayerite in seeds, elevated interfacial supersaturation, and high temperature collectively facilitate the formation of ultrafine, equiaxial, near-spherical gibbsite.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"239 ","pages":"Article 106586"},"PeriodicalIF":4.8000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25001513","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafine, near-spherical gibbsite with a low oil-absorption value hold significant potential for use in advanced flame-retardant fillers, polishing materials and dense alumina-bearing ceramics owing to its regular morphology, high dispersibility and good flowability. In this study, ultrafine equiaxial near-spherical gibbsite with a medium particle size (d50) of 359 nm and an oil-absorption values of 25.0 mL/100 g was precipitated by seeded precipitation from sodium aluminate solution. The mixed seeds, comprising bayerite and gibbsite, were prepared by the addition of NaHCO3, Al2(SO4)3, and H2O2, respectively. A high bayerite content in the NaHCO3-induced seeds, combined with significant supersaturation fluctuations, enabled a precipitation efficiency exceeding 51 % at an initial temperature of 80 °C for 35 h. Preferential growth of the (110), (100), and (001) planes occurred during the early stage, followed by the emergence of the (101) and (112) planes in the mid-to-late stage. High supersaturation from bayerite dissolution and adsorption of Al(OH)4 ions promoted the development of (001), (110), (100), (101), and (112) planes, resulting in the formation of equiaxial near-spherical gibbsite. Furthermore, the low surface energy and high zeta potential of the well-crystallized gibbsite precipitated from NaHCO3-induced seeds contributed to its low oil absorption. These findings indicate that the presence of bayerite in seeds, elevated interfacial supersaturation, and high temperature collectively facilitate the formation of ultrafine, equiaxial, near-spherical gibbsite.
加入混合种子可析出低吸油值的超细等轴近球形三水铝石
超细近球形三水铝石具有较低的吸油值,其形态规则、分散性高、流动性好,在高级阻燃填料、抛光材料和致密氧化铝陶瓷等方面具有重要的应用潜力。本研究采用种子沉淀法从铝酸钠溶液中析出中粒径(d50)为359 nm、吸油值为25.0 mL/100 g的超细等轴近球形三水铝石。用NaHCO3、Al2(SO4)3和H2O2分别制备了bayerite和三水铝石混合种子。nahco3诱导种子中bayerite含量高,且有明显的过饱和波动,使得在80℃的初始温度下,35 h的降水效率超过51%。(110)、(100)和(001)平面在早期优先生长,随后(101)和(112)平面在中后期出现。bayerite的溶解和Al(OH)4−离子的高过饱和吸附促进了(001)、(110)、(100)、(101)和(112)平面的发育,形成等轴近球形三水铝石。此外,从nahco3诱导种子中析出的结晶良好的三水铝石具有较低的表面能和较高的zeta电位,这也是其吸油率较低的原因之一。这些结果表明,种子中贝汞石的存在、界面过饱和的升高和高温共同促进了超细、等轴、近球形三沸石的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Hydrometallurgy
Hydrometallurgy 工程技术-冶金工程
CiteScore
9.50
自引率
6.40%
发文量
144
审稿时长
3.4 months
期刊介绍: Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties. Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信