DFT study of strain-induced optical shift in graphone, a 2D wide-bandgap semiconductor: Perspectives for photovoltaic and optoelectronic applications

IF 4.9 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
B. Moustahssine, R. Masrour
{"title":"DFT study of strain-induced optical shift in graphone, a 2D wide-bandgap semiconductor: Perspectives for photovoltaic and optoelectronic applications","authors":"B. Moustahssine,&nbsp;R. Masrour","doi":"10.1016/j.jpcs.2025.113251","DOIUrl":null,"url":null,"abstract":"<div><div>This study uses density functional theory (DFT) to examine the effect of strain on the optical properties of graphone. Based on previous studies linking the band gap to the dielectric function (Zheng et al., 2017; Onishi and Fu, 2024), we propose that mechanical strain can be used to tune electronic and optical properties. The undeformed structure exhibits a indirect gap of <span><math><mrow><mn>4</mn><mo>.</mo><mn>21</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span> with an absorption onset near <span><math><mrow><mn>4</mn><mo>.</mo><mn>21</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span>. Tensile strain (<span><math><mrow><mo>+</mo><mn>30</mn><mtext>%</mtext></mrow></math></span>) reduces the gap to <span><math><mrow><mn>0</mn><mo>.</mo><mn>96</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span> and shifts the main absorption peak from <span><math><mrow><mn>13</mn><mo>.</mo><mn>05</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span> to <span><math><mrow><mn>2</mn><mo>.</mo><mn>33</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span>, eventually closing the gap and inducing a semiconductor-to-semimetal transition. Conversely, compressive strain (<span><math><mrow><mo>−</mo><mn>30</mn><mtext>%</mtext></mrow></math></span>) widens the gap to <span><math><mrow><mn>5</mn><mo>.</mo><mn>58</mn><mspace></mspace><mtext>eV</mtext></mrow></math></span>, pushing absorption into the ultraviolet. Strain also modifies the dielectric function: <span><math><mrow><msub><mrow><mi>ɛ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow></mrow></math></span> increases by <span><math><mrow><mo>∼</mo><mn>18</mn><mtext>%</mtext></mrow></math></span> at low energies, while <span><math><mrow><msub><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow></mrow></math></span> exhibits a redshift. The absorption coefficient increases from <span><math><mrow><mn>4</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup><mspace></mspace><msup><mrow><mtext>cm</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>5</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup><mspace></mspace><msup><mrow><mtext>cm</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, accompanied by a <span><math><mrow><mo>∼</mo><mn>12</mn><mtext>%</mtext></mrow></math></span> decrease in transmission. These findings highlight strain engineering as an effective strategy for tailoring graphone’s optical performance.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"209 ","pages":"Article 113251"},"PeriodicalIF":4.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725007048","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study uses density functional theory (DFT) to examine the effect of strain on the optical properties of graphone. Based on previous studies linking the band gap to the dielectric function (Zheng et al., 2017; Onishi and Fu, 2024), we propose that mechanical strain can be used to tune electronic and optical properties. The undeformed structure exhibits a indirect gap of 4.21eV with an absorption onset near 4.21eV. Tensile strain (+30%) reduces the gap to 0.96eV and shifts the main absorption peak from 13.05eV to 2.33eV, eventually closing the gap and inducing a semiconductor-to-semimetal transition. Conversely, compressive strain (30%) widens the gap to 5.58eV, pushing absorption into the ultraviolet. Strain also modifies the dielectric function: ɛ1(ω) increases by 18% at low energies, while ɛ2(ω) exhibits a redshift. The absorption coefficient increases from 4.5×105cm1 to 5.9×105cm1, accompanied by a 12% decrease in transmission. These findings highlight strain engineering as an effective strategy for tailoring graphone’s optical performance.
二维宽禁带半导体石墨烯中应变致光学位移的DFT研究:光伏光电应用前景
本研究利用密度泛函理论(DFT)研究应变对石墨烯光学性质的影响。基于先前将带隙与介电函数联系起来的研究(Zheng et al., 2017; Onishi and Fu, 2024),我们提出机械应变可用于调整电子和光学特性。未变形结构表现出4.21eV的间接间隙,吸收开始于4.21eV附近。拉伸应变(+30%)使间隙减小到0.96eV,使主吸收峰从13.05eV移动到2.33eV,最终闭合间隙并诱导半导体到半金属的转变。相反,压缩应变(- 30%)使间隙扩大到5.58eV,推动吸收进入紫外线。应变也改变了介电函数:在低能时,ε 1(ω)增加了~ 18%,而ε 2(ω)表现出红移。吸收系数从4.5×105cm−1增加到5.9×105cm−1,同时透射率降低~ 12%。这些发现强调应变工程是定制石墨烯光学性能的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信