Eyyüp Orhan , Kübra Coşar , Hüseyin Okan Anadut , Uğur Soykan , Fuat Köksal , Yusuf Sert
{"title":"DFT-based investigation of polymer components for concrete impregnation: Electronic and structural insights","authors":"Eyyüp Orhan , Kübra Coşar , Hüseyin Okan Anadut , Uğur Soykan , Fuat Köksal , Yusuf Sert","doi":"10.1016/j.jpcs.2025.113252","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a systematic density functional theory (DFT) investigation of the structural, electronic, and vibrational properties of polymer components used in concrete impregnation, namely styrene, divinyl benzene, and benzoyl peroxide. The molecular geometries of monomers and their oligomeric structures were optimized, and their electronic descriptors were analyzed to provide insights into stability and reactivity. The calculated HOMO–LUMO energy gaps indicated semiconducting behavior for the monomers, while a significant band gap reduction was observed with increasing polymer chain length, suggesting enhanced charge-transfer ability and optical activity during polymerization. Vibrational frequency analysis confirmed the characteristic modes of functional groups responsible for polymerization. In addition, global reactivity descriptors such as hardness, softness, and electrophilicity were evaluated to elucidate the trends associated with molecular growth. The findings highlight the strong correlation between chain length and electronic stability, and provide predictive insights into the performance of polymer–concrete composites at the molecular level. This theoretical framework complements experimental studies and may guide the design of more durable polymer-modified concrete systems.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"209 ","pages":"Article 113252"},"PeriodicalIF":4.9000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002236972500705X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a systematic density functional theory (DFT) investigation of the structural, electronic, and vibrational properties of polymer components used in concrete impregnation, namely styrene, divinyl benzene, and benzoyl peroxide. The molecular geometries of monomers and their oligomeric structures were optimized, and their electronic descriptors were analyzed to provide insights into stability and reactivity. The calculated HOMO–LUMO energy gaps indicated semiconducting behavior for the monomers, while a significant band gap reduction was observed with increasing polymer chain length, suggesting enhanced charge-transfer ability and optical activity during polymerization. Vibrational frequency analysis confirmed the characteristic modes of functional groups responsible for polymerization. In addition, global reactivity descriptors such as hardness, softness, and electrophilicity were evaluated to elucidate the trends associated with molecular growth. The findings highlight the strong correlation between chain length and electronic stability, and provide predictive insights into the performance of polymer–concrete composites at the molecular level. This theoretical framework complements experimental studies and may guide the design of more durable polymer-modified concrete systems.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.