Retrieval of planetary boundary layer height from CALIPSO satellite observations using a machine learning approach

IF 7.3 2区 环境科学与生态学 Q1 ECOLOGY
A. Salcedo-Bosch , F. Rocadenbosch , C.I. Argañaraz , G. Curci , S. Lolli
{"title":"Retrieval of planetary boundary layer height from CALIPSO satellite observations using a machine learning approach","authors":"A. Salcedo-Bosch ,&nbsp;F. Rocadenbosch ,&nbsp;C.I. Argañaraz ,&nbsp;G. Curci ,&nbsp;S. Lolli","doi":"10.1016/j.ecoinf.2025.103431","DOIUrl":null,"url":null,"abstract":"<div><div>The planetary boundary layer height (PBLH) is a key variable in air quality, climate modeling, and weather prediction. Traditional retrieval methods, such as radiosondes, provide high accuracy but lack spatial coverage. This study presents a Random Forest (RF) model based on Machine Learning (ML) to estimate PBLH from ten years of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), using radiosonde measurements as a reference. The model achieves an <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of 0.67 and an RMSE of 278.02 m with a spatial resolution of <span><math><mo>≈</mo></math></span> 20 × 20 km<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> in a test set that covers mainly Europe and North America. Unlike previous methods, our approach does not require atmospheric typing and uses minimal data filtering, demonstrating robustness under diverse aerosol and cloud conditions. Although validation is currently limited to mid-latitude regions, the method offers a scalable approach to global monitoring and supports the management of climate and air quality. Future work will extend the validation to other geographic zones and explore deep learning models for further improvements.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"92 ","pages":"Article 103431"},"PeriodicalIF":7.3000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125004406","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The planetary boundary layer height (PBLH) is a key variable in air quality, climate modeling, and weather prediction. Traditional retrieval methods, such as radiosondes, provide high accuracy but lack spatial coverage. This study presents a Random Forest (RF) model based on Machine Learning (ML) to estimate PBLH from ten years of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), using radiosonde measurements as a reference. The model achieves an R2 of 0.67 and an RMSE of 278.02 m with a spatial resolution of 20 × 20 km2 in a test set that covers mainly Europe and North America. Unlike previous methods, our approach does not require atmospheric typing and uses minimal data filtering, demonstrating robustness under diverse aerosol and cloud conditions. Although validation is currently limited to mid-latitude regions, the method offers a scalable approach to global monitoring and supports the management of climate and air quality. Future work will extend the validation to other geographic zones and explore deep learning models for further improvements.
利用机器学习方法从CALIPSO卫星观测资料中检索行星边界层高度
行星边界层高度(PBLH)是空气质量、气候模式和天气预报的关键变量。传统的检索方法,如无线电探空仪,精度高,但缺乏空间覆盖。本研究提出了一个基于机器学习(ML)的随机森林(RF)模型,以无线电探空测量值为参考,从云气溶胶激光雷达和红外探路者卫星观测(CALIPSO)上的正交偏振云气溶胶激光雷达(CALIOP)的十年数据中估计PBLH。在主要覆盖欧洲和北美的测试集上,模型的R2为0.67,RMSE为278.02 m,空间分辨率为≈20 × 20 km2。与以前的方法不同,我们的方法不需要大气类型,并且使用最小的数据过滤,在不同的气溶胶和云条件下显示出鲁棒性。虽然目前的验证仅限于中纬度地区,但该方法为全球监测提供了可扩展的方法,并支持气候和空气质量的管理。未来的工作将把验证扩展到其他地理区域,并探索深度学习模型以进一步改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信