{"title":"On o-free sequences and compacta","authors":"Nathan Carlson","doi":"10.1016/j.topol.2025.109631","DOIUrl":null,"url":null,"abstract":"<div><div>We use the notion of an <em>o</em>-free sequence to give new bounds for the cardinality of Hausdorff spaces and regular spaces. There are several implications for compacta. One is that if <em>X</em> is a compactum then <span><math><mi>w</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>≤</mo><mi>h</mi><mi>L</mi><msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mrow><mi>o</mi><mi>t</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></msup></math></span>, where <span><math><mi>o</mi><mi>t</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is the <em>o</em>-tightness introduced by Tkachenko. Another is that <span><math><mo>|</mo><mi>X</mi><mo>|</mo><mo>≤</mo><mi>h</mi><mi>L</mi><msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mrow><mi>o</mi><mi>t</mi><mo>(</mo><mi>X</mi><mo>)</mo><mi>w</mi><msub><mrow><mi>ψ</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></mrow></msup></math></span> if <em>X</em> is a compactum. This is shown to be a strict improvement of Arhangel'skiĭ's bound <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>ψ</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></msup></math></span>. Finally, we show <span><math><mo>|</mo><mi>X</mi><mo>|</mo><mo>≤</mo><mi>h</mi><mi>L</mi><msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mrow><mi>o</mi><mi>t</mi><mo>(</mo><mi>X</mi><mo>)</mo><mi>π</mi><mi>χ</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></msup></math></span> if <em>X</em> is a homogeneous compactum. We note <span><math><mi>h</mi><mi>L</mi><msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mrow><mi>o</mi><mi>t</mi><mo>(</mo><mi>X</mi><mo>)</mo><mi>π</mi><mi>χ</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></msup><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>t</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></msup></math></span> for such spaces, where <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>t</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></msup></math></span> is de la Vega's bound for the cardinality of homogeneous compacta.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"377 ","pages":"Article 109631"},"PeriodicalIF":0.5000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125004298","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We use the notion of an o-free sequence to give new bounds for the cardinality of Hausdorff spaces and regular spaces. There are several implications for compacta. One is that if X is a compactum then , where is the o-tightness introduced by Tkachenko. Another is that if X is a compactum. This is shown to be a strict improvement of Arhangel'skiĭ's bound . Finally, we show if X is a homogeneous compactum. We note for such spaces, where is de la Vega's bound for the cardinality of homogeneous compacta.
我们利用无0序列的概念给出了Hausdorff空间和正则空间的基数的新边界。compact有几个含义。一是如果X是紧致,则w(X)≤hL(X)ot(X),其中ot(X)为Tkachenko引入的o紧性。另一个是|X|≤hL(X)ot(X)wψc(X),如果X是紧致的。这被证明是Arhangel'ski 's界2ψ(X)的严格改进。最后,我们证明了如果X是齐次紧致,|X|≤hL(X)ot(X)πχ(X)。我们注意到hL(X)ot(X)πχ(X)≤2t(X),其中2t(X)是齐次紧的基数的de la Vega界。
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.