Vítor M. Hanriot , Turíbio T. Salis , Luiz C.B. Torres , Frederico Coelho , Antonio P. Braga
{"title":"Large margin classifier with graph-based adaptive regularization","authors":"Vítor M. Hanriot , Turíbio T. Salis , Luiz C.B. Torres , Frederico Coelho , Antonio P. Braga","doi":"10.1016/j.patrec.2025.09.008","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces the use of per-class regularization hyperparameters in Gabriel graph-based binary classifiers. We demonstrate how the quality index used for regularization behaves both in the margin region and in the presence of outliers, and how incorporating this regularization flexibility can lead to solutions that effectively eliminate outliers while training the classifier. We also show how it can address class imbalance by generating higher and lower thresholds for the majority and minority classes, respectively. Thus, rather than having a single solution based on fixed thresholds, flexible thresholds expand the solution space and can be optimized through hyperparameter tuning algorithms. Friedman test shows that flexible thresholds are capable of improving Gabriel graph-based classifiers.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"198 ","pages":"Pages 43-49"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525003186","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces the use of per-class regularization hyperparameters in Gabriel graph-based binary classifiers. We demonstrate how the quality index used for regularization behaves both in the margin region and in the presence of outliers, and how incorporating this regularization flexibility can lead to solutions that effectively eliminate outliers while training the classifier. We also show how it can address class imbalance by generating higher and lower thresholds for the majority and minority classes, respectively. Thus, rather than having a single solution based on fixed thresholds, flexible thresholds expand the solution space and can be optimized through hyperparameter tuning algorithms. Friedman test shows that flexible thresholds are capable of improving Gabriel graph-based classifiers.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.