Bridging demonstration and multi-source attention fusion using LLMs for grounded multimodal named entity recognition

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hua Zhang , Xianlv Liang , Wanxiang Cai , Pengliang Chen , Bi Chen , Bo Jiang , Ye Wang
{"title":"Bridging demonstration and multi-source attention fusion using LLMs for grounded multimodal named entity recognition","authors":"Hua Zhang ,&nbsp;Xianlv Liang ,&nbsp;Wanxiang Cai ,&nbsp;Pengliang Chen ,&nbsp;Bi Chen ,&nbsp;Bo Jiang ,&nbsp;Ye Wang","doi":"10.1016/j.inffus.2025.103800","DOIUrl":null,"url":null,"abstract":"<div><div>Grounded multimodal named entity recognition (GMNER) is a challenging and emerging task that aims to identify all entity-type-region triplets from multimodal image-text pairs. Existing approaches often struggle with insufficient interaction between named entities and visual regions, leading to difficulties in accurate triplet alignment, cross-modal entity disambiguation, and visual semantic grounding. To tackle these challenges, we present a novel two-stage GMNER framework that integrates demonstration retrieval and multi-source cross-layer attention fusion. The initial stage for MNER employs entity-aware attention mechanism to select task-relevant demonstration examples, enabling large language models (LLMs) to generate high-quality external knowledge. The subsequent stage for visual grounding implements a sufficient cross-modal semantic interaction by introducing the multi-source multi-head cross-layer attention fusion (MMCAF) module, which integrates multi-source inputs (raw text, named and visual entity expressions, and image captions). Meanwhile, within this two-stage framework, we adopt a dual-LLM architecture using both text and vision LLMs, aiming to separate the generation of semantic priors from visual-language alignment and bridge gaps in cross-modal understanding. Our model achieves state-of-the-art performance across two GMNER datasets (Twitter-GMNER and Twitter-FMNERG) with different granularity, and further demonstrates superiority in ablation experiments and cross-domain evaluation.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"127 ","pages":"Article 103800"},"PeriodicalIF":15.5000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525008620","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Grounded multimodal named entity recognition (GMNER) is a challenging and emerging task that aims to identify all entity-type-region triplets from multimodal image-text pairs. Existing approaches often struggle with insufficient interaction between named entities and visual regions, leading to difficulties in accurate triplet alignment, cross-modal entity disambiguation, and visual semantic grounding. To tackle these challenges, we present a novel two-stage GMNER framework that integrates demonstration retrieval and multi-source cross-layer attention fusion. The initial stage for MNER employs entity-aware attention mechanism to select task-relevant demonstration examples, enabling large language models (LLMs) to generate high-quality external knowledge. The subsequent stage for visual grounding implements a sufficient cross-modal semantic interaction by introducing the multi-source multi-head cross-layer attention fusion (MMCAF) module, which integrates multi-source inputs (raw text, named and visual entity expressions, and image captions). Meanwhile, within this two-stage framework, we adopt a dual-LLM architecture using both text and vision LLMs, aiming to separate the generation of semantic priors from visual-language alignment and bridge gaps in cross-modal understanding. Our model achieves state-of-the-art performance across two GMNER datasets (Twitter-GMNER and Twitter-FMNERG) with different granularity, and further demonstrates superiority in ablation experiments and cross-domain evaluation.
基于llm的多模态命名实体识别桥接演示和多源注意融合
基于多模态命名实体识别(GMNER)是一项具有挑战性的新兴任务,旨在从多模态图像-文本对中识别所有实体类型-区域三元组。现有的方法往往与命名实体和视觉区域之间的交互不足作斗争,导致在准确的三重对齐,跨模态实体消歧义和视觉语义基础方面存在困难。为了应对这些挑战,我们提出了一种新的两阶段GMNER框架,该框架集成了演示检索和多源跨层注意力融合。MNER的初始阶段采用实体感知注意机制选择与任务相关的演示示例,使大型语言模型(llm)能够生成高质量的外部知识。视觉基础的后续阶段通过引入多源多头跨层注意融合(MMCAF)模块实现了充分的跨模态语义交互,该模块集成了多源输入(原始文本、命名和视觉实体表达式以及图像字幕)。同时,在这个两阶段框架中,我们采用了使用文本和视觉llm的双llm架构,旨在将语义先验的生成与视觉语言对齐分离开来,并弥合跨模态理解中的差距。我们的模型在两个不同粒度的GMNER数据集(Twitter-GMNER和Twitter-FMNERG)上实现了最先进的性能,并进一步证明了在烧蚀实验和跨域评估中的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信