Tensor representation-based dynamic graph neural network for traffic flow prediction using auxiliary information

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jianli Zhao , Yiran Hua , Huan Huo , Qiuxia Sun , Qing Li , Hailong Zhang
{"title":"Tensor representation-based dynamic graph neural network for traffic flow prediction using auxiliary information","authors":"Jianli Zhao ,&nbsp;Yiran Hua ,&nbsp;Huan Huo ,&nbsp;Qiuxia Sun ,&nbsp;Qing Li ,&nbsp;Hailong Zhang","doi":"10.1016/j.inffus.2025.103794","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately predicting traffic flow is paramount in addressing congestion issues within urban traffic management. However, traditional deep learning methods face limitations in handling the complex dynamic relationships among multi-source data, coupled with large model parameter counts, high computational complexity, and constraints imposed by purely data-driven approaches. To address these challenges, this study introduces the <u>T</u>ensor <u>R</u>epresentation-based <u>A</u>uxiliary Information <u>F</u>usion <u>Net</u>work (TrafNet). TrafNet integrates various types of traffic data to construct dynamic graph tensors, utilizing dynamic graph convolution to uncover local dynamic correlations across multi-source data. Furthermore, it enhances global dynamic relationship modeling through shared periodic embeddings, enabling the model to more accurately capture temporal dependencies between traffic data. Additionally, TrafNet employs tensor representation learning to decompose dynamic graph tensors into a multiplicative form of multiple small factors, thereby reducing model parameter counts. Lastly, the introduction of Laplacian graph embeddings as initial parameter values for constructing dynamic graph tensor factors enhances model stability and convergence speed. Experimental results demonstrate that TrafNet performs well on three publicly available datasets, achieving higher prediction accuracy and stability compared to traditional methods.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"127 ","pages":"Article 103794"},"PeriodicalIF":15.5000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525008565","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately predicting traffic flow is paramount in addressing congestion issues within urban traffic management. However, traditional deep learning methods face limitations in handling the complex dynamic relationships among multi-source data, coupled with large model parameter counts, high computational complexity, and constraints imposed by purely data-driven approaches. To address these challenges, this study introduces the Tensor Representation-based Auxiliary Information Fusion Network (TrafNet). TrafNet integrates various types of traffic data to construct dynamic graph tensors, utilizing dynamic graph convolution to uncover local dynamic correlations across multi-source data. Furthermore, it enhances global dynamic relationship modeling through shared periodic embeddings, enabling the model to more accurately capture temporal dependencies between traffic data. Additionally, TrafNet employs tensor representation learning to decompose dynamic graph tensors into a multiplicative form of multiple small factors, thereby reducing model parameter counts. Lastly, the introduction of Laplacian graph embeddings as initial parameter values for constructing dynamic graph tensor factors enhances model stability and convergence speed. Experimental results demonstrate that TrafNet performs well on three publicly available datasets, achieving higher prediction accuracy and stability compared to traditional methods.
基于张量表示的动态图神经网络辅助信息交通流预测
准确预测交通流量对于解决城市交通拥堵问题至关重要。然而,传统的深度学习方法在处理多源数据之间复杂的动态关系方面存在局限性,再加上模型参数数量大、计算复杂度高以及纯数据驱动方法的约束。为了应对这些挑战,本研究引入了基于张量表示的辅助信息融合网络(TrafNet)。交通网络集成了各种类型的交通数据来构建动态图张量,利用动态图卷积来揭示多源数据之间的局部动态相关性。此外,它通过共享周期嵌入增强了全局动态关系建模,使模型能够更准确地捕获交通数据之间的时间依赖性。此外,TrafNet使用张量表示学习将动态图张量分解为多个小因子的乘法形式,从而减少模型参数计数。最后,引入拉普拉斯图嵌入作为构造动态图张量因子的初始参数值,提高了模型的稳定性和收敛速度。实验结果表明,与传统方法相比,该方法在三个公开可用的数据集上表现良好,具有更高的预测精度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信