Quantization and reduction for torsion free CR manifolds

IF 1.6 2区 数学 Q1 MATHEMATICS
Andrea Galasso , Chin-Yu Hsiao
{"title":"Quantization and reduction for torsion free CR manifolds","authors":"Andrea Galasso ,&nbsp;Chin-Yu Hsiao","doi":"10.1016/j.jfa.2025.111225","DOIUrl":null,"url":null,"abstract":"<div><div>Consider a compact torsion free CR manifold <em>X</em> and assume that <em>X</em> admits a compact CR Lie group action <em>G</em>. Let <em>L</em> be a <em>G</em>-equivariant rigid CR line bundle over <em>X</em>. It seems natural to consider the space of <em>G</em>-invariant CR sections in the high tensor powers as quantization space, on which a certain weighted <em>G</em>-invariant Fourier–Szegő operator projects. Under certain natural assumptions, we show that the group invariant Fourier–Szegő projector admits a full asymptotic expansion. As an application, if the tensor power of the line bundle is large enough, we prove that quantization commutes with reduction.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 2","pages":"Article 111225"},"PeriodicalIF":1.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625004070","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a compact torsion free CR manifold X and assume that X admits a compact CR Lie group action G. Let L be a G-equivariant rigid CR line bundle over X. It seems natural to consider the space of G-invariant CR sections in the high tensor powers as quantization space, on which a certain weighted G-invariant Fourier–Szegő operator projects. Under certain natural assumptions, we show that the group invariant Fourier–Szegő projector admits a full asymptotic expansion. As an application, if the tensor power of the line bundle is large enough, we prove that quantization commutes with reduction.
无扭CR流形的量化与约化
考虑一个紧致无挠CR流形X,并假设X存在紧致CR李群作用g。设L是X上的一个g等变刚性CR线束。将高张量幂中g不变CR截面的空间视为量化空间似乎是很自然的,在量化空间上投射着某个加权g不变傅立叶-塞格格算子。在一定的自然假设下,证明了群不变傅里叶-塞格尔投影可以完全渐近展开。作为一个应用,当线束的张量幂足够大时,我们证明了量化与约简相交换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信