Electrophoretically deposited 2D Ni–Fe LDH nanosheet thin films for enhanced oxygen evolution reaction activity

IF 4.9 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Prashant D. Sawant , Shweta V. Talekar , Shraddha A. Pawar , Mayura J. Medhekar , Ganesh L. Khande , Sayali S. Kulkarni , Navnath S. Padalkar , Hemraj M. Yadav , Jayavant L. Gunjakar
{"title":"Electrophoretically deposited 2D Ni–Fe LDH nanosheet thin films for enhanced oxygen evolution reaction activity","authors":"Prashant D. Sawant ,&nbsp;Shweta V. Talekar ,&nbsp;Shraddha A. Pawar ,&nbsp;Mayura J. Medhekar ,&nbsp;Ganesh L. Khande ,&nbsp;Sayali S. Kulkarni ,&nbsp;Navnath S. Padalkar ,&nbsp;Hemraj M. Yadav ,&nbsp;Jayavant L. Gunjakar","doi":"10.1016/j.jpcs.2025.113264","DOIUrl":null,"url":null,"abstract":"<div><div>The compact stacked structure of layered double hydroxide (LDHs) restricts the exposure of the electrocatalytic active sites; thus, developing low-dimensional LDH nanomaterials with expanded surface area is crucial for oxygen evolution reaction (OER). Developing 2-D monolayers of LDH by liquid phase delamination can expose numerous active sites without changing their structure and composition. Here, we report an efficient and green way to synthesize delaminated nickel-iron-LDH nanosheets (NFL-NSs) and use them to deposit thin film OER electrocatalyst electrodes. The NFL-NSs thin film exhibits outstanding oxygen evolution performance in alkaline conditions compared to the bulk nickel-iron-LDH (NFL). The NFL-NSs thin film exhibits a low overpotential of 234 mV at a current density of 10 mA cm<sup>−2</sup> and outstanding electrode kinetics with a Tafel slope of 56.5 mV dec<sup>−1</sup>. The electrochemical impedance (EIS) spectrum shows a lower charge transfer resistance of NFL-NSs (1.65 Ω) than NFL. Moreover, they display a high electrochemical active surface area (ECSA)S of 13.12 cm<sup>2</sup> and enhanced electrocatalytic stability during the chronoamperometric test of 24 h. The excellent catalytic stability demonstrated NFL-NSs electrodes are robust electrocatalysts. This article provides an efficient delamination method of LDHs to get cost-effective electrocatalysts for the OER with more active sites.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"209 ","pages":"Article 113264"},"PeriodicalIF":4.9000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725007176","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The compact stacked structure of layered double hydroxide (LDHs) restricts the exposure of the electrocatalytic active sites; thus, developing low-dimensional LDH nanomaterials with expanded surface area is crucial for oxygen evolution reaction (OER). Developing 2-D monolayers of LDH by liquid phase delamination can expose numerous active sites without changing their structure and composition. Here, we report an efficient and green way to synthesize delaminated nickel-iron-LDH nanosheets (NFL-NSs) and use them to deposit thin film OER electrocatalyst electrodes. The NFL-NSs thin film exhibits outstanding oxygen evolution performance in alkaline conditions compared to the bulk nickel-iron-LDH (NFL). The NFL-NSs thin film exhibits a low overpotential of 234 mV at a current density of 10 mA cm−2 and outstanding electrode kinetics with a Tafel slope of 56.5 mV dec−1. The electrochemical impedance (EIS) spectrum shows a lower charge transfer resistance of NFL-NSs (1.65 Ω) than NFL. Moreover, they display a high electrochemical active surface area (ECSA)S of 13.12 cm2 and enhanced electrocatalytic stability during the chronoamperometric test of 24 h. The excellent catalytic stability demonstrated NFL-NSs electrodes are robust electrocatalysts. This article provides an efficient delamination method of LDHs to get cost-effective electrocatalysts for the OER with more active sites.

Abstract Image

电泳沉积二维Ni-Fe LDH纳米片薄膜,增强析氧反应活性
层状双氢氧化物(LDHs)紧凑的堆叠结构限制了电催化活性位点的暴露;因此,开发具有扩大表面积的低维LDH纳米材料对析氧反应(OER)至关重要。通过液相分层法制备LDH二维单层,可以在不改变其结构和组成的情况下暴露出许多活性位点。在这里,我们报告了一种高效和绿色的方法来合成脱层镍铁ldh纳米片(NFL-NSs),并使用它们沉积薄膜OER电催化剂电极。与散装镍铁ldh (NFL)相比,NFL- nss薄膜在碱性条件下表现出优异的析氧性能。NFL-NSs薄膜在电流密度为10 mA cm−2时的过电位为234 mV,电极动力学性能优异,Tafel斜率为56.5 mV dec−1。电化学阻抗(EIS)谱显示,NFL- nss的电荷转移电阻(1.65 Ω)低于NFL。此外,在24 h的时间电流测试中,它们显示出较高的电化学活性表面积(ECSA)S (13.12 cm2)和增强的电催化稳定性。优异的催化稳定性表明NFL-NSs电极是稳健的电催化剂。本文提供了一种高效的LDHs分层方法,以获得具有更多活性位点的OER的高性价比电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信