{"title":"Influence of seabed topography on hydroelastic behavior of VLFS integrated with porous breakwater","authors":"S. Hemanth, D. Karmakar","doi":"10.1016/j.oceaneng.2025.122984","DOIUrl":null,"url":null,"abstract":"<div><div>The present study investigates the effect of seabed topography on the hydroelastic behaviour of a Very Large Floating Structure (VLFS) integrated with porous floating breakwaters for inclined, irregular, stepped and irregular stepped seabed conditions. The real-world marine environments feature complex topographies that significantly influence wave-structure interactions. The integrated system combines a flexible VLFS with porous floating breakwaters designed to attenuate wave energy and mitigate structural responses. A coupled Multi-Domain Boundary Element Method (MDBEM) for fluid dynamics and the Finite Difference Method (FDM) for structural analysis is employed for the computation, allowing for accurate modelling of wave-structure-seabed interactions. The numerical model developed for the MDBEM-FDM approach is validated against established benchmark results available in the literature. The key parameters, such as seabed slope, seabed irregularity, breakwater porosity, and placement, are analysed to evaluate their impact on hydrodynamic forces, bending moments, and strain distributions. The numerical results indicate that irregular seabed can amplify localized bending stresses by up to 30 % compared to flat beds, while inclined seabed alters wave reflection patterns, intensifying asymmetric loads. However, porous breakwaters effectively reduce transmitted wave energy by 40–50 %, suppressing adverse hydroelastic responses. The study emphasizes the importance of considering seabed topography while designing VLFSs integrated breakwater. The presence of the breakwater helps in the reduction of the stresses brought on by uneven seabed conditions by strategically placing them and optimizing their porosity. The findings from the present study can contribute to the development of resilient VLFS systems in real-world marine environments, ensuring structural integrity under varying seabed conditions.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"342 ","pages":"Article 122984"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825026678","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The present study investigates the effect of seabed topography on the hydroelastic behaviour of a Very Large Floating Structure (VLFS) integrated with porous floating breakwaters for inclined, irregular, stepped and irregular stepped seabed conditions. The real-world marine environments feature complex topographies that significantly influence wave-structure interactions. The integrated system combines a flexible VLFS with porous floating breakwaters designed to attenuate wave energy and mitigate structural responses. A coupled Multi-Domain Boundary Element Method (MDBEM) for fluid dynamics and the Finite Difference Method (FDM) for structural analysis is employed for the computation, allowing for accurate modelling of wave-structure-seabed interactions. The numerical model developed for the MDBEM-FDM approach is validated against established benchmark results available in the literature. The key parameters, such as seabed slope, seabed irregularity, breakwater porosity, and placement, are analysed to evaluate their impact on hydrodynamic forces, bending moments, and strain distributions. The numerical results indicate that irregular seabed can amplify localized bending stresses by up to 30 % compared to flat beds, while inclined seabed alters wave reflection patterns, intensifying asymmetric loads. However, porous breakwaters effectively reduce transmitted wave energy by 40–50 %, suppressing adverse hydroelastic responses. The study emphasizes the importance of considering seabed topography while designing VLFSs integrated breakwater. The presence of the breakwater helps in the reduction of the stresses brought on by uneven seabed conditions by strategically placing them and optimizing their porosity. The findings from the present study can contribute to the development of resilient VLFS systems in real-world marine environments, ensuring structural integrity under varying seabed conditions.
期刊介绍:
Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.