Jacobi–Ritz method for free vibration analysis of medium-thickness sandwich cylindrical shells utilizing the layerwise theory and domain decomposition method

IF 5.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Xinyang Zhao , Shuo Wang , Zhiyuan Mei, Shuyue An, Zhan Zhang
{"title":"Jacobi–Ritz method for free vibration analysis of medium-thickness sandwich cylindrical shells utilizing the layerwise theory and domain decomposition method","authors":"Xinyang Zhao ,&nbsp;Shuo Wang ,&nbsp;Zhiyuan Mei,&nbsp;Shuyue An,&nbsp;Zhan Zhang","doi":"10.1016/j.oceaneng.2025.123065","DOIUrl":null,"url":null,"abstract":"<div><div>This study establishes the core theoretical foundation by coupling the Layerwise Theory (LWT) and First-Order Shear Deformation Theory (FSDT). Then, the Jacobi-Ritz method and Domain Decomposition Method (DDM) are integrated into this foundation to construct a four-layer synergistic coupled analysis framework. This framework solves the technical challenges in vibration analysis of medium-thickness sandwich cylindrical shells (with a thickness-to-radius ratio <span><math><mrow><mi>h</mi><mo>/</mo><mi>R</mi><mo>=</mo><mn>0.05</mn><mo>−</mo><mn>0.2</mn></mrow></math></span>). Exclusive DDM connection energy formulas and matrices are derived to adapt to the LWT-FSDT framework, ensuring interlayer displacement continuity and mechanical consistency between subdomains. Global displacement functions are constructed within this framework using Jacobi polynomials. Moreover, the cylindrical shell is discretized into subdomains connected by virtual springs via DDM. This design suppresses high-order oscillations in non-segmented models, reduces the sensitivity of Jacobi parameters by two orders of magnitude, and eliminates the need for complex parameter optimization. According to the numerical result validation, when the core material modulus is ≥ 100 MPa, the maximum error between the theoretical results and finite element method (FEM) results is ≤ 2.16 %. The framework accurately captures the interfacial behavior of heterogeneous materials (with an error of 1.34 %) and quantifies its applicable boundary (the error is approximately 10 % when the core modulus is 10 MPa). Lastly, the proposed framework provides a robust and efficient analytical tool for the engineering design of medium-thickness sandwich cylindrical shells, especially those with heterogeneous material configurations.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"342 ","pages":"Article 123065"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825027489","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This study establishes the core theoretical foundation by coupling the Layerwise Theory (LWT) and First-Order Shear Deformation Theory (FSDT). Then, the Jacobi-Ritz method and Domain Decomposition Method (DDM) are integrated into this foundation to construct a four-layer synergistic coupled analysis framework. This framework solves the technical challenges in vibration analysis of medium-thickness sandwich cylindrical shells (with a thickness-to-radius ratio h/R=0.050.2). Exclusive DDM connection energy formulas and matrices are derived to adapt to the LWT-FSDT framework, ensuring interlayer displacement continuity and mechanical consistency between subdomains. Global displacement functions are constructed within this framework using Jacobi polynomials. Moreover, the cylindrical shell is discretized into subdomains connected by virtual springs via DDM. This design suppresses high-order oscillations in non-segmented models, reduces the sensitivity of Jacobi parameters by two orders of magnitude, and eliminates the need for complex parameter optimization. According to the numerical result validation, when the core material modulus is ≥ 100 MPa, the maximum error between the theoretical results and finite element method (FEM) results is ≤ 2.16 %. The framework accurately captures the interfacial behavior of heterogeneous materials (with an error of 1.34 %) and quantifies its applicable boundary (the error is approximately 10 % when the core modulus is 10 MPa). Lastly, the proposed framework provides a robust and efficient analytical tool for the engineering design of medium-thickness sandwich cylindrical shells, especially those with heterogeneous material configurations.
利用分层理论和区域分解方法对中厚夹层圆柱壳进行自由振动分析的Jacobi-Ritz方法
将分层理论(Layerwise Theory, LWT)与一阶剪切变形理论(FSDT)相结合,建立了核心理论基础。然后,在此基础上结合Jacobi-Ritz方法和区域分解方法(DDM),构建了一个四层协同耦合分析框架。该框架解决了中厚夹层圆柱壳(厚度半径比h/R=0.05 ~ 0.2)振动分析中的技术难题。为适应LWT-FSDT框架,导出了专属的DDM连接能量公式和矩阵,保证了层间位移连续性和子域间力学一致性。利用雅可比多项式在此框架内构造了全局位移函数。此外,通过DDM将圆柱壳离散成由虚拟弹簧连接的子域。该设计抑制了非分段模型的高阶振荡,将Jacobi参数的灵敏度降低了两个数量级,消除了复杂参数优化的需要。数值结果验证表明,当芯材模量≥100 MPa时,理论计算结果与有限元计算结果的最大误差≤2.16%。该框架准确地捕捉了非均质材料的界面行为(误差为1.34%),并量化了其适用边界(当核心模量为10 MPa时,误差约为10%)。最后,所提出的框架为中厚夹层圆柱壳的工程设计,特别是非均质材料结构的工程设计提供了一个强大而有效的分析工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信