A robust deep learning framework for rapid hydrodynamic analysis and design of multi-Salter's duck wave energy farms

IF 5.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Mohammad Mehdi Hoseini Karani , Mohammad Reza Nikoo , Houshang Dolatshahi Pirooz , Saleh Al-Saadi , Amir H. Gandomi , Amir Hossein Parsaeian
{"title":"A robust deep learning framework for rapid hydrodynamic analysis and design of multi-Salter's duck wave energy farms","authors":"Mohammad Mehdi Hoseini Karani ,&nbsp;Mohammad Reza Nikoo ,&nbsp;Houshang Dolatshahi Pirooz ,&nbsp;Saleh Al-Saadi ,&nbsp;Amir H. Gandomi ,&nbsp;Amir Hossein Parsaeian","doi":"10.1016/j.oceaneng.2025.122896","DOIUrl":null,"url":null,"abstract":"<div><div>Ocean wave energy offers substantial potential for sustainable power generation, but designing efficient wave energy converter (WEC) farms faces high computational costs from complex hydrodynamic simulations. This study presents a novel deep learning-based surrogate modeling framework to accelerate the analysis and design of multi-Salter's duck WEC arrays. It decomposes hydrodynamic response prediction into two stages: first, estimating individual multi-Salter's duck unit dynamics, then predicting interaction effects between neighboring units. Specialized deep learning architectures for each stage were optimized via neural architecture search (NAS) and trained on a comprehensive dataset spanning diverse design parameters, array configurations, and environmental conditions. Against nine tuned benchmarks, our framework achieved a 19.3 % reduction in mean absolute error (MAE) for individual unit dynamics and a 62.5 % MAE reduction for interaction effects compared to the best-performing benchmarks. A case study using realistic wave climates from southeast Australia validated the model's accuracy in predicting annual average power absorption and interaction factors, while drastically reducing computational time relative to traditional numerical methods. This efficient and accurate surrogate model enables optimized co-design and advances the feasibility of large-scale wave energy deployment.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"342 ","pages":"Article 122896"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002980182502579X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Ocean wave energy offers substantial potential for sustainable power generation, but designing efficient wave energy converter (WEC) farms faces high computational costs from complex hydrodynamic simulations. This study presents a novel deep learning-based surrogate modeling framework to accelerate the analysis and design of multi-Salter's duck WEC arrays. It decomposes hydrodynamic response prediction into two stages: first, estimating individual multi-Salter's duck unit dynamics, then predicting interaction effects between neighboring units. Specialized deep learning architectures for each stage were optimized via neural architecture search (NAS) and trained on a comprehensive dataset spanning diverse design parameters, array configurations, and environmental conditions. Against nine tuned benchmarks, our framework achieved a 19.3 % reduction in mean absolute error (MAE) for individual unit dynamics and a 62.5 % MAE reduction for interaction effects compared to the best-performing benchmarks. A case study using realistic wave climates from southeast Australia validated the model's accuracy in predicting annual average power absorption and interaction factors, while drastically reducing computational time relative to traditional numerical methods. This efficient and accurate surrogate model enables optimized co-design and advances the feasibility of large-scale wave energy deployment.

Abstract Image

一个强大的深度学习框架,用于快速水动力分析和设计多索尔特鸭波能农场
海浪能为可持续发电提供了巨大的潜力,但设计高效的波浪能转换器(WEC)农场面临着复杂流体动力学模拟的高计算成本。本文提出了一种新的基于深度学习的代理建模框架,以加速多索尔特鸭WEC阵列的分析和设计。将水动力响应预测分为两个阶段:首先估算单个多索尔特鸭单元的动力,然后预测相邻单元之间的相互作用效应。每个阶段的专业深度学习架构都通过神经架构搜索(NAS)进行优化,并在涵盖不同设计参数、阵列配置和环境条件的综合数据集上进行训练。与性能最好的基准测试相比,我们的框架在单个单元动态的平均绝对误差(MAE)上降低了19.3%,在交互效果上降低了62.5%。一个使用澳大利亚东南部真实波浪气候的案例研究验证了该模型在预测年平均功率吸收和相互作用因子方面的准确性,同时相对于传统数值方法大大减少了计算时间。这种高效、准确的替代模型可以优化协同设计,提高大规模波浪能部署的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信