On small densities defined without pseudorandomness

IF 1.2 3区 数学 Q1 MATHEMATICS
Thomas Karam
{"title":"On small densities defined without pseudorandomness","authors":"Thomas Karam","doi":"10.1016/j.ffa.2025.102735","DOIUrl":null,"url":null,"abstract":"<div><div>We identify a new sufficient condition on linear forms <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>:</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>→</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> which guarantees that every subset of <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> on which none of <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> has full image has a density which tends to 0 with <em>k</em>. The condition is much weaker than the condition usually used to guarantee that <span><math><mo>(</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span> takes each value of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msubsup></math></span> with probability close to <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>−</mo><mi>k</mi></mrow></msup></math></span> when <em>x</em> is chosen uniformly at random in the Boolean cube <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span>. The density is at most quasipolynomially small in <em>k</em>, a bound that is necessarily close to sharp.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"110 ","pages":"Article 102735"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001650","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We identify a new sufficient condition on linear forms ϕ1,,ϕk:FpnFp which guarantees that every subset of {0,1}n on which none of ϕ1,,ϕk has full image has a density which tends to 0 with k. The condition is much weaker than the condition usually used to guarantee that (ϕ1(x),,ϕk(x)) takes each value of Fpk with probability close to pk when x is chosen uniformly at random in the Boolean cube {0,1}n. The density is at most quasipolynomially small in k, a bound that is necessarily close to sharp.
在没有伪随机性定义的小密度上
我们在线性形式中确定了一个新的充分条件,它保证在每个{0,1}n的子集上,如果不存在一个完整的图像,则其密度随k趋近于0。该条件远弱于通常用来保证当在布尔立方体{0,1}n中均匀随机选择x时,(ϕ1(x),…,ϕk(x))取Fpk的每个值的概率接近p - k的条件。密度在k中最多是准多项式的小,这个边界必然接近于锐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信