Chin Hei Chan , Zhiguo Ding , Nian Li , Xi Xie , Maosheng Xiong , Michael E. Zieve
{"title":"On a class of complete permutation quadrinomials","authors":"Chin Hei Chan , Zhiguo Ding , Nian Li , Xi Xie , Maosheng Xiong , Michael E. Zieve","doi":"10.1016/j.ffa.2025.102734","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn><mi>q</mi></mrow></msup><mo>+</mo><mi>b</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>c</mi><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>2</mn></mrow></msup><mo>+</mo><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, where <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> is the finite field of order <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><mi>q</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span> for some positive integer <em>m</em>. Tu et al. (Finite Fields Appl. 68: 1-20, 2020) proposed a sufficient condition under which <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a complete permutation on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. In this paper, we show that this sufficient condition is also necessary, and when <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a complete permutation, then <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>x</mi></math></span> are simultaneously linear equivalent to <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mover><mrow><mi>x</mi></mrow><mo>‾</mo></mover></math></span> and <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mover><mrow><mi>x</mi></mrow><mo>‾</mo></mover><mo>+</mo><mi>γ</mi><mi>x</mi></math></span> for some <span><math><mi>γ</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> satisfying <span><math><mrow><mi>ord</mi></mrow><mo>(</mo><msup><mrow><mi>γ</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo><mo>=</mo><mn>3</mn></math></span>. This result leads to a complete characterization of the complete permutation quadrinomials of the above form <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"110 ","pages":"Article 102734"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001649","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let , where is the finite field of order and for some positive integer m. Tu et al. (Finite Fields Appl. 68: 1-20, 2020) proposed a sufficient condition under which is a complete permutation on . In this paper, we show that this sufficient condition is also necessary, and when is a complete permutation, then and are simultaneously linear equivalent to and for some satisfying . This result leads to a complete characterization of the complete permutation quadrinomials of the above form .
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.