A special Cholesky-based parameterization for estimation of restricted correlation matrices

IF 2.4 3区 经济学 Q1 ECONOMICS
Kun Huang, Xin Ye, Mengyi Wang
{"title":"A special Cholesky-based parameterization for estimation of restricted correlation matrices","authors":"Kun Huang,&nbsp;Xin Ye,&nbsp;Mengyi Wang","doi":"10.1016/j.jocm.2025.100580","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating a valid correlation matrix with structural restrictions presents significant challenges, particularly in ensuring positive definiteness and enforcing zero-correlation constraints. Traditional approaches, such as the Cholesky decomposition, often suffer from numerical instability and convergence failures in these settings. This paper introduces a novel Cholesky-based parameterization that effectively addresses these issues by allowing zero constraints while maintaining positive definiteness and unit diagonal elements. Through extensive Monte Carlo simulations, we demonstrate that the proposed method outperforms the existing spherical parameterization approach, achieving superior convergence rates, enhanced estimation accuracy, and robustness under high-correlation scenarios. An empirical application on non-commuters’ activity participation in Shanghai further validates the practical effectiveness of the proposed method, showcasing its ability to capture complex behavioral relationships while ensuring stable estimation. The results suggest that the proposed parameterization provides a reliable and computationally efficient alternative for correlation matrix estimation in multivariate models.</div></div>","PeriodicalId":46863,"journal":{"name":"Journal of Choice Modelling","volume":"57 ","pages":"Article 100580"},"PeriodicalIF":2.4000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Choice Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755534525000430","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating a valid correlation matrix with structural restrictions presents significant challenges, particularly in ensuring positive definiteness and enforcing zero-correlation constraints. Traditional approaches, such as the Cholesky decomposition, often suffer from numerical instability and convergence failures in these settings. This paper introduces a novel Cholesky-based parameterization that effectively addresses these issues by allowing zero constraints while maintaining positive definiteness and unit diagonal elements. Through extensive Monte Carlo simulations, we demonstrate that the proposed method outperforms the existing spherical parameterization approach, achieving superior convergence rates, enhanced estimation accuracy, and robustness under high-correlation scenarios. An empirical application on non-commuters’ activity participation in Shanghai further validates the practical effectiveness of the proposed method, showcasing its ability to capture complex behavioral relationships while ensuring stable estimation. The results suggest that the proposed parameterization provides a reliable and computationally efficient alternative for correlation matrix estimation in multivariate models.
一种特殊的基于cholesk的参数化方法,用于限制性相关矩阵的估计
估计具有结构限制的有效相关矩阵提出了重大挑战,特别是在确保正确定性和强制零相关约束方面。传统的方法,如Cholesky分解,在这些情况下经常遭受数值不稳定和收敛失败。本文介绍了一种新颖的基于choleski的参数化,通过允许零约束同时保持正确定性和单位对角元素,有效地解决了这些问题。通过广泛的蒙特卡罗模拟,我们证明了所提出的方法优于现有的球面参数化方法,在高相关场景下实现了优越的收敛速度,提高了估计精度和鲁棒性。对上海非通勤者活动参与的实证应用进一步验证了所提方法的实际有效性,展示了其在确保稳定估计的同时捕获复杂行为关系的能力。结果表明,所提出的参数化方法为多变量模型中的相关矩阵估计提供了一种可靠且计算效率高的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信