{"title":"Initial layer of the anti-cyclotomic Zp-extension of Q(−m) and capitulation phenomenon","authors":"Georges Gras","doi":"10.1016/j.jnt.2025.09.004","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>k</mi><mo>=</mo><mi>Q</mi><mo>(</mo><msqrt><mrow><mo>−</mo><mi>m</mi></mrow></msqrt><mo>)</mo></math></span> be an imaginary quadratic field. We consider the properties of capitulation of the <em>p</em>-class group of <em>k</em> in the anti-cyclotomic <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-extension <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>ac</mi></mrow></msup></math></span> of <em>k</em>; for this, using a new approach based on the <span><math><msub><mrow><mi>Log</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-function (<span><span>Theorem 2.3</span></span>, <span><span>Theorem 3.4</span></span>), we determine the first layer <span><math><msubsup><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>ac</mi></mrow></msubsup></math></span> of <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>ac</mi></mrow></msup></math></span> over <em>k</em>, and we show that some partial capitulation may exist in <span><math><msubsup><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>ac</mi></mrow></msubsup></math></span>, even when <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>ac</mi></mrow></msup><mo>/</mo><mi>k</mi></math></span> is totally ramified. We have conjectured that this phenomenon of capitulation is specific of the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-extensions of <em>k</em>, distinct from the cyclotomic one. For <span><math><mi>p</mi><mo>=</mo><mn>3</mn></math></span>, we characterize a sub-family of fields <em>k</em> (Normal Split cases) for which <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>ac</mi></mrow></msup></math></span> is not linearly disjoint from the Hilbert class field (<span><span>Theorem 5.1</span></span>). No assumptions are made on the splitting of 3 in <em>k</em> and in <span><math><msup><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mi>Q</mi><mo>(</mo><msqrt><mrow><mn>3</mn><mi>m</mi></mrow></msqrt><mo>)</mo></math></span>, nor on the structures of their 3-class groups. Four <span>pari/gp</span> programs (<span><span>7.1</span></span>, <span><span>7.2</span></span>, <span><span>7.3</span></span>, <span><span>7.4</span></span> depending on the classification of <span><span>Definition 2.10</span></span>) are given, computing a defining cubic polynomial of <span><math><msubsup><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>ac</mi></mrow></msubsup></math></span>, and the main invariants attached to the fields <em>k</em>, <span><math><msup><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, <span><math><msubsup><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>ac</mi></mrow></msubsup></math></span>; some relations with Iwasawa's invariants are discussed (<span><span>Theorem 9.6</span></span>).</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 634-701"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002604","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be an imaginary quadratic field. We consider the properties of capitulation of the p-class group of k in the anti-cyclotomic -extension of k; for this, using a new approach based on the -function (Theorem 2.3, Theorem 3.4), we determine the first layer of over k, and we show that some partial capitulation may exist in , even when is totally ramified. We have conjectured that this phenomenon of capitulation is specific of the -extensions of k, distinct from the cyclotomic one. For , we characterize a sub-family of fields k (Normal Split cases) for which is not linearly disjoint from the Hilbert class field (Theorem 5.1). No assumptions are made on the splitting of 3 in k and in , nor on the structures of their 3-class groups. Four pari/gp programs (7.1, 7.2, 7.3, 7.4 depending on the classification of Definition 2.10) are given, computing a defining cubic polynomial of , and the main invariants attached to the fields k, , ; some relations with Iwasawa's invariants are discussed (Theorem 9.6).
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.