Exceptional zero formulas for anticyclotomic p-adic L-functions

IF 0.7 3区 数学 Q3 MATHEMATICS
Víctor Hernández Barrios , Santiago Molina Blanco
{"title":"Exceptional zero formulas for anticyclotomic p-adic L-functions","authors":"Víctor Hernández Barrios ,&nbsp;Santiago Molina Blanco","doi":"10.1016/j.jnt.2025.08.015","DOIUrl":null,"url":null,"abstract":"<div><div>In this note we define anticyclotomic <em>p</em>-adic measures attached to a modular elliptic curve <em>E</em> over a general number field <em>F</em>, a quadratic extension <span><math><mi>K</mi><mo>/</mo><mi>F</mi></math></span>, and a set of places <em>S</em> of <em>F</em> above <em>p</em>. We study the exceptional zero phenomenon that arises when <em>E</em> has multiplicative reduction at some place in <em>S</em>. In this direction, we obtain <em>p</em>-adic Gross-Zagier formulas relating derivatives of the corresponding <em>p</em>-adic L-functions to the extended Mordell-Weil group of <em>E</em>. Our main result uses the recent construction of plectic points on elliptic curves due to Fornea and Gehrmann and generalizes their main result in <span><span>[9]</span></span>. We obtain a formula that computes the <em>r</em>-th derivative of the <em>p</em>-adic L-function, where <em>r</em> is the number of places in <em>S</em> where <em>E</em> has multiplicative reduction, in terms of plectic points and Tate periods of <em>E</em>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 583-633"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002495","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this note we define anticyclotomic p-adic measures attached to a modular elliptic curve E over a general number field F, a quadratic extension K/F, and a set of places S of F above p. We study the exceptional zero phenomenon that arises when E has multiplicative reduction at some place in S. In this direction, we obtain p-adic Gross-Zagier formulas relating derivatives of the corresponding p-adic L-functions to the extended Mordell-Weil group of E. Our main result uses the recent construction of plectic points on elliptic curves due to Fornea and Gehrmann and generalizes their main result in [9]. We obtain a formula that computes the r-th derivative of the p-adic L-function, where r is the number of places in S where E has multiplicative reduction, in terms of plectic points and Tate periods of E.
抗细胞p进l函数的例外零公式
在本文中,我们定义了在一般数域F上的模椭圆曲线E、二次扩展K/F和F在p上的位置S上的反胞群p进测度。我们研究了当E在S上的某个位置有乘法约简时出现的异常零现象。我们得到了将相应的p进l函数的导数与e的扩展Mordell-Weil群联系起来的p进Gross-Zagier公式。我们的主要结果使用了最近由于Fornea和Gehrmann在椭圆曲线上构造的塑性点,并在[9]中推广了他们的主要结果。我们得到一个计算p进l函数的r阶导数的公式,其中r是S中E有乘法约简的位置个数,用E的伸缩点和Tate周期表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信