An optimal lower bound for the size of the restricted sumsets containing powers

IF 0.7 3区 数学 Q3 MATHEMATICS
Wang-Xing Yu , Jun-Jia Zhao
{"title":"An optimal lower bound for the size of the restricted sumsets containing powers","authors":"Wang-Xing Yu ,&nbsp;Jun-Jia Zhao","doi":"10.1016/j.jnt.2025.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> be a fixed real number and <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span> be an integer. In 2023, Yu, Chen and Chen proved that for any sufficiently large positive integer <em>n</em>, if <span><math><mi>A</mi><mo>⊆</mo><mo>[</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>]</mo></math></span> with <span><math><mi>gcd</mi><mo>⁡</mo><mi>A</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>&gt;</mo><mo>(</mo><mn>1</mn><mo>/</mo><mi>m</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>+</mo><mi>ε</mi><mo>)</mo><mi>n</mi></math></span>, then there is a power of <em>r</em> that can be represented as the sum of distinct elements of <em>A</em>, where <span><math><mi>m</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span> is a computable positive integer only related to <em>r</em>. In this paper, we improve this result for <span><math><mi>r</mi><mo>≥</mo><mn>3</mn></math></span>. We prove that the condition <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>&gt;</mo><mo>(</mo><mn>1</mn><mo>/</mo><mi>m</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>+</mo><mi>ε</mi><mo>)</mo><mi>n</mi></math></span> can be replaced by <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>&gt;</mo><mi>n</mi><mo>/</mo><mi>m</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>+</mo><mi>f</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>, where <span><math><mi>f</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span> is a computable positive integer only related to <em>r</em>. We will also show that this lower bound is optimal, namely, for infinitely many positive integers <em>n</em>, there exists <span><math><mi>B</mi><mo>⊆</mo><mo>[</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>]</mo></math></span> with <span><math><mi>gcd</mi><mo>⁡</mo><mi>B</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mo>|</mo><mi>B</mi><mo>|</mo><mo>=</mo><mi>n</mi><mo>/</mo><mi>m</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>+</mo><mi>f</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span> such that no power of <em>r</em> can be represented as the sum of distinct elements of <em>B</em>. This also generalizes a result in which <span><math><mi>r</mi><mo>=</mo><mn>2</mn></math></span> obtained by Yang and Zhao.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 785-807"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002574","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let ε>0 be a fixed real number and r2 be an integer. In 2023, Yu, Chen and Chen proved that for any sufficiently large positive integer n, if A[1,n] with gcdA=1 and |A|>(1/m(r)+ε)n, then there is a power of r that can be represented as the sum of distinct elements of A, where m(r) is a computable positive integer only related to r. In this paper, we improve this result for r3. We prove that the condition |A|>(1/m(r)+ε)n can be replaced by |A|>n/m(r)+f(r), where f(r) is a computable positive integer only related to r. We will also show that this lower bound is optimal, namely, for infinitely many positive integers n, there exists B[1,n] with gcdB=1 and |B|=n/m(r)+f(r) such that no power of r can be represented as the sum of distinct elements of B. This also generalizes a result in which r=2 obtained by Yang and Zhao.
包含幂的受限集合大小的最优下界
设ε>;0为固定实数,r≥2为整数。Yu、Chen、Chen在2023年证明了对于任何足够大的正整数n,当A≤gcd (A) =1,且| (A)≤|>(1/m(r)+ε)n时,则存在一个可表示为A的不同元素和的幂,其中m(r)是仅与r相关的可计算正整数。本文在r≥3时改进了这一结果。我们证明条件| |祝辞(1 / m (r) +ε)n可以取而代之的是| |在n / m (r) + f (r), f (r)是一个可计算的正整数仅与r。我们还将表明,该下界是最优的,即为无限多的正整数n,存在B⊆(1,n)肾小球疾病⁡B = 1 B和| | = n / m (r) + f r (r),这样任何力量可以表示成不同的元素之和B .这也概括的结果r = 2通过杨和赵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信