Hilbert modular Eisenstein congruences of local origin

IF 0.7 3区 数学 Q3 MATHEMATICS
Dan Fretwell , Jenny Roberts
{"title":"Hilbert modular Eisenstein congruences of local origin","authors":"Dan Fretwell ,&nbsp;Jenny Roberts","doi":"10.1016/j.jnt.2025.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>F</em> be an arbitrary totally real field. Under standard conditions we prove the existence of certain Eisenstein congruences between parallel weight <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span> Hilbert eigenforms of level <span><math><mi>mp</mi></math></span> and Hilbert Eisenstein series of level <span><math><mi>m</mi></math></span>, for arbitrary ideal <span><math><mi>m</mi></math></span> and prime ideal <span><math><mi>p</mi><mo>∤</mo><mi>m</mi></math></span> of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span>. Such congruences have their moduli coming from special values of Hecke <em>L</em>-functions and their Euler factors, and our results allow for the eigenforms to have non-trivial Hecke character. After this, we consider the question of when such congruences can be satisfied by newforms, proving general results about this.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 861-896"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X2500263X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let F be an arbitrary totally real field. Under standard conditions we prove the existence of certain Eisenstein congruences between parallel weight k3 Hilbert eigenforms of level mp and Hilbert Eisenstein series of level m, for arbitrary ideal m and prime ideal pm of OF. Such congruences have their moduli coming from special values of Hecke L-functions and their Euler factors, and our results allow for the eigenforms to have non-trivial Hecke character. After this, we consider the question of when such congruences can be satisfied by newforms, proving general results about this.
局部原点的希尔伯特模爱森斯坦同余
设F是一个任意的全实场。在标准条件下,我们证明了对于of的任意理想m和素数理想p∤m, mp层的平行权k≥3个希尔伯特特征形式与m层的希尔伯特爱森斯坦级数之间存在一定的爱森斯坦同余。这种同余的模来自于Hecke l函数的特殊值及其欧拉因子,并且我们的结果允许特征形式具有非平凡的Hecke特征。在此之后,我们考虑了新形式何时可以满足这种同余的问题,并证明了关于它的一般结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信