Xiaoxia Yang , Jiahui Wan , Haojie Zhu , Chuan-Zhi (Thomas) Xie , Botao Zhang
{"title":"Optimization of passenger evacuation path in flood scenarios considering companion behaviors","authors":"Xiaoxia Yang , Jiahui Wan , Haojie Zhu , Chuan-Zhi (Thomas) Xie , Botao Zhang","doi":"10.1016/j.simpat.2025.103212","DOIUrl":null,"url":null,"abstract":"<div><div>The optimization of emergency evacuation paths for passengers in underground rail transit hubs has become a critical challenge in urban flood prevention and disaster mitigation systems. Most previous evacuation path optimization methods assume passengers move independently as individuals without considering socially connected groups traveling together. To address this, this paper proposes a novel passenger evacuation path optimization method considering companion behavior during subway station flooding incidents, and develops an innovative ETACO algorithm to solve the path optimization model. Taking an actual subway station as a case study, a station simulation system constructed using PathFinder is employed to simulate passenger evacuation processes, demonstrating the effectiveness of the proposed path optimization scheme. An improved entropy weight method is introduced to conduct a multidimensional evaluation of evacuation performance. The results indicate that: (1) Companion behavior significantly inhibits evacuation efficiency, with higher proportions of grouped evacuees leading to increased evacuation time and reduced average movement speed; (2) The proposed ETACO dynamic optimization strategy remarkably enhances the convergence performance of the path optimization model solution, achieving a 16% improvement in average optimal objective improvement rate compared to conventional ACO, while generating more efficient path optimization strategies; (3) Increasing numbers of interrupted road sections progressively slow down passenger evacuation; (4) Evacuation effectiveness evaluation further verifies the enhancement of station safety performance through the path optimization strategy. This research provides a more realistic solution for evacuation path optimization considering companion behavior in complex flood scenarios.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"145 ","pages":"Article 103212"},"PeriodicalIF":3.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25001479","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The optimization of emergency evacuation paths for passengers in underground rail transit hubs has become a critical challenge in urban flood prevention and disaster mitigation systems. Most previous evacuation path optimization methods assume passengers move independently as individuals without considering socially connected groups traveling together. To address this, this paper proposes a novel passenger evacuation path optimization method considering companion behavior during subway station flooding incidents, and develops an innovative ETACO algorithm to solve the path optimization model. Taking an actual subway station as a case study, a station simulation system constructed using PathFinder is employed to simulate passenger evacuation processes, demonstrating the effectiveness of the proposed path optimization scheme. An improved entropy weight method is introduced to conduct a multidimensional evaluation of evacuation performance. The results indicate that: (1) Companion behavior significantly inhibits evacuation efficiency, with higher proportions of grouped evacuees leading to increased evacuation time and reduced average movement speed; (2) The proposed ETACO dynamic optimization strategy remarkably enhances the convergence performance of the path optimization model solution, achieving a 16% improvement in average optimal objective improvement rate compared to conventional ACO, while generating more efficient path optimization strategies; (3) Increasing numbers of interrupted road sections progressively slow down passenger evacuation; (4) Evacuation effectiveness evaluation further verifies the enhancement of station safety performance through the path optimization strategy. This research provides a more realistic solution for evacuation path optimization considering companion behavior in complex flood scenarios.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.