Note on intertemporal preference with loss aversion

IF 0.7 4区 经济学 Q4 ECONOMICS
Kyoung Jin Choi , Junkee Jeon , Hyeng Keun Koo
{"title":"Note on intertemporal preference with loss aversion","authors":"Kyoung Jin Choi ,&nbsp;Junkee Jeon ,&nbsp;Hyeng Keun Koo","doi":"10.1016/j.mathsocsci.2025.102469","DOIUrl":null,"url":null,"abstract":"<div><div>We study two models of intertemporal preferences exhibiting loss aversion: one based on utility changes relative to a reference point, and another incorporating mental adjustment costs. Within a multi-period (possibly infinite-horizon) framework, we show that the two formulations are theoretically equivalent. The resulting preferences are neither monotone nor concave in general. We derive necessary and sufficient conditions for monotonicity and concavity, and provide a continuous-time extension that preserves the equivalence. Our results offer a tractable and rigorous foundation for modeling intertemporal behavior under reference-dependent preferences.</div></div>","PeriodicalId":51118,"journal":{"name":"Mathematical Social Sciences","volume":"138 ","pages":"Article 102469"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Social Sciences","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165489625000848","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study two models of intertemporal preferences exhibiting loss aversion: one based on utility changes relative to a reference point, and another incorporating mental adjustment costs. Within a multi-period (possibly infinite-horizon) framework, we show that the two formulations are theoretically equivalent. The resulting preferences are neither monotone nor concave in general. We derive necessary and sufficient conditions for monotonicity and concavity, and provide a continuous-time extension that preserves the equivalence. Our results offer a tractable and rigorous foundation for modeling intertemporal behavior under reference-dependent preferences.
关于损失厌恶的跨期偏好的注释
我们研究了两种表现损失厌恶的跨期偏好模型:一种基于相对于参考点的效用变化,另一种包含心理调整成本。在多周期(可能是无限视界)框架内,我们证明了这两个公式在理论上是等价的。得到的首选项一般既不是单调的,也不是凹的。我们得到了单调性和凹性的充分必要条件,并给出了一个保持等价的连续时间扩展。我们的结果为参考依赖偏好下的跨期行为建模提供了一个易于处理和严格的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Social Sciences
Mathematical Social Sciences 数学-数学跨学科应用
CiteScore
1.30
自引率
0.00%
发文量
55
审稿时长
59 days
期刊介绍: The international, interdisciplinary journal Mathematical Social Sciences publishes original research articles, survey papers, short notes and book reviews. The journal emphasizes the unity of mathematical modelling in economics, psychology, political sciences, sociology and other social sciences. Topics of particular interest include the fundamental aspects of choice, information, and preferences (decision science) and of interaction (game theory and economic theory), the measurement of utility, welfare and inequality, the formal theories of justice and implementation, voting rules, cooperative games, fair division, cost allocation, bargaining, matching, social networks, and evolutionary and other dynamics models. Papers published by the journal are mathematically rigorous but no bounds, from above or from below, limits their technical level. All mathematical techniques may be used. The articles should be self-contained and readable by social scientists trained in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信