Privacy-preserving energy analytics in smart offices via container-based Federated Learning

IF 7.6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Roberto Morcillo-Jimenez , Jose M. Rivas , M. Dolores Ruiz , Maria J. Martin-Bautista , Carlos Fernandez-Basso
{"title":"Privacy-preserving energy analytics in smart offices via container-based Federated Learning","authors":"Roberto Morcillo-Jimenez ,&nbsp;Jose M. Rivas ,&nbsp;M. Dolores Ruiz ,&nbsp;Maria J. Martin-Bautista ,&nbsp;Carlos Fernandez-Basso","doi":"10.1016/j.iot.2025.101782","DOIUrl":null,"url":null,"abstract":"<div><div>Federated Learning (FL) has emerged as a promising paradigm to enable privacy-preserving machine learning across distributed IoT devices. This work relies on <em>SimulaFed</em>, a container-based in-simulation framework for FL that is readily applicable to IoT scenarios. It leverages real-world energy data from an office building in which environmental and occupancy parameters were monitored by an IoT system. Our framework performs distributed model training that preserves occupant privacy without incurring prohibitive communication overhead and benchmarks four aggregation rules–Federated Averaging (FedAvg), Federated Proximal (FedProx), FedAdam, and <span>SCAFFOLD</span>.</div><div>Using <span><math><mo>≈</mo></math></span><strong> <!-->262<!--> <!-->000</strong> hourly windows and a lightweight 1-D CNN (<span><math><mo>≈</mo></math></span> <!--> <!-->0.35<!--> <!-->M parameters; 354<!--> <!-->488 weights), we benchmarked four aggregation rules. <strong>FedProx</strong>, with a tuned proximity term (<span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>05</mn></mrow></math></span>), achieved the lowest MAE: <strong>0.755 ± 0.000</strong>, marginally ahead of FedAvg <strong>(0.764 ± 0.084)</strong> by 1.2%. <span>SCAFFOLD</span> delivered accuracy comparable to FedAvg (MAE <span><math><mrow><mn>0</mn><mo>.</mo><mn>771</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>042</mn></mrow></math></span>) but with a higher runtime footprint; FedAdam increased computational cost without accuracy gains. Each update payload is about 1.4<!--> <!-->MB per client; across 17 clients and 10 rounds (upload + broadcast) this totals <span><math><mo>≈</mo></math></span><strong>480<!--> <!-->MB</strong>. Detailed CPU/memory telemetry is reported in Section 4 and Table 13.</div><div>These results confirm the viability of <em>SimulaFed</em> as a rapid-prototyping platform for energy-aware FL in smart offices, paving the way for deployments that balance data confidentiality, prediction accuracy and resource usage.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"34 ","pages":"Article 101782"},"PeriodicalIF":7.6000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525002963","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Federated Learning (FL) has emerged as a promising paradigm to enable privacy-preserving machine learning across distributed IoT devices. This work relies on SimulaFed, a container-based in-simulation framework for FL that is readily applicable to IoT scenarios. It leverages real-world energy data from an office building in which environmental and occupancy parameters were monitored by an IoT system. Our framework performs distributed model training that preserves occupant privacy without incurring prohibitive communication overhead and benchmarks four aggregation rules–Federated Averaging (FedAvg), Federated Proximal (FedProx), FedAdam, and SCAFFOLD.
Using  262 000 hourly windows and a lightweight 1-D CNN (  0.35 M parameters; 354 488 weights), we benchmarked four aggregation rules. FedProx, with a tuned proximity term (μ=0.05), achieved the lowest MAE: 0.755 ± 0.000, marginally ahead of FedAvg (0.764 ± 0.084) by 1.2%. SCAFFOLD delivered accuracy comparable to FedAvg (MAE 0.771±0.042) but with a higher runtime footprint; FedAdam increased computational cost without accuracy gains. Each update payload is about 1.4 MB per client; across 17 clients and 10 rounds (upload + broadcast) this totals 480 MB. Detailed CPU/memory telemetry is reported in Section 4 and Table 13.
These results confirm the viability of SimulaFed as a rapid-prototyping platform for energy-aware FL in smart offices, paving the way for deployments that balance data confidentiality, prediction accuracy and resource usage.
通过基于容器的联邦学习在智能办公室中保护隐私的能源分析
联邦学习(FL)已经成为一种有前途的范例,可以在分布式物联网设备上实现保护隐私的机器学习。这项工作依赖于SimulaFed,这是一个基于容器的FL模拟框架,很容易适用于物联网场景。它利用了办公大楼的真实能源数据,其中的环境和占用参数由物联网系统监控。我们的框架执行分布式模型训练,在不产生令人难以忍受的通信开销的情况下保护使用者隐私,并对四种聚合规则——联邦平均(fedag)、联邦近端(FedProx)、联邦近端(FedAdam)和SCAFFOLD——进行基准测试。使用≈262 000小时窗口和轻量级1-D CNN(≈0.35 M参数;354 488个权重),我们对四个聚合规则进行基准测试。调整接近项(μ=0.05)后,FedProx获得了最低的MAE: 0.755±0.000,略微领先fedag(0.764±0.084)1.2%。SCAFFOLD提供的精度与fedag相当(MAE 0.771±0.042),但运行时间占用更高;FedAdam增加了计算成本,但没有提高准确性。每个客户机的每次更新有效负载约为1.4 MB;在17个客户端和10轮(上传+广播)中,总计约480 MB。详细的CPU/内存遥测报告见第4节和表13。这些结果证实了SimulaFed作为智能办公室能源感知FL快速原型平台的可行性,为平衡数据机密性、预测准确性和资源使用的部署铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信