Joint optimisation of time and energy consumption for data aggregation in fog-enabled IoT networks

IF 7.6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sira Yongchareon
{"title":"Joint optimisation of time and energy consumption for data aggregation in fog-enabled IoT networks","authors":"Sira Yongchareon","doi":"10.1016/j.iot.2025.101775","DOIUrl":null,"url":null,"abstract":"<div><div>Fog computing extends cloud capabilities to the network edge, enabling Internet-of-Things (IoT) devices to offload computation to nearby fog nodes rather than a remote cloud. Offloading aggregation tasks reduces data redundancy and accelerates analytics while easing device energy use and backhaul load. Yet end-to-end completion time—comprising execution, transmission, and queueing—can still be substantial, creating a challenging time-energy trade-off. We formulate data-aggregation offloading as a multi-objective optimization problem that jointly minimizes latency (makespan) and energy under compute and bandwidth constraints. To solve it, we develop an NSGA-III-based method that searches for Pareto-optimal offloading and scheduling decisions across sensor and fog nodes. Comprehensive simulations and systematic experiments demonstrate that our approach consistently outperforms state-of-the-art baselines, delivering lower latency and energy consumption with better scalability.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"34 ","pages":"Article 101775"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525002896","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Fog computing extends cloud capabilities to the network edge, enabling Internet-of-Things (IoT) devices to offload computation to nearby fog nodes rather than a remote cloud. Offloading aggregation tasks reduces data redundancy and accelerates analytics while easing device energy use and backhaul load. Yet end-to-end completion time—comprising execution, transmission, and queueing—can still be substantial, creating a challenging time-energy trade-off. We formulate data-aggregation offloading as a multi-objective optimization problem that jointly minimizes latency (makespan) and energy under compute and bandwidth constraints. To solve it, we develop an NSGA-III-based method that searches for Pareto-optimal offloading and scheduling decisions across sensor and fog nodes. Comprehensive simulations and systematic experiments demonstrate that our approach consistently outperforms state-of-the-art baselines, delivering lower latency and energy consumption with better scalability.
在雾支持的物联网网络中,联合优化数据聚合的时间和能量消耗
雾计算将云功能扩展到网络边缘,使物联网(IoT)设备能够将计算卸载到附近的雾节点,而不是远程云。卸载聚合任务可减少数据冗余并加速分析,同时减少设备能耗和回程负载。然而,端到端完成时间(包括执行、传输和排队)仍然很大,造成了时间-能量权衡的挑战。我们将数据聚合卸载作为一个多目标优化问题,在计算和带宽限制下共同最小化延迟(makespan)和能量。为了解决这个问题,我们开发了一种基于nsga - iii的方法,该方法在传感器和雾节点之间搜索帕累托最优卸载和调度决策。综合模拟和系统实验表明,我们的方法始终优于最先进的基线,提供更低的延迟和能耗,具有更好的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信